12/07/2017 CDI 1.2: Aula 5 - Atividade 2 Mais sobre observers | Alura - Cursos online de tecnologia

] 02
Mais sobre observers

Transcricdo

Agora falta implementar a parte de quem vai ficar esperando receber as notificagdes. Para isso vamos implementar o design

pattern observer.

Alguém ira ficar observando um determinado evento e quando o evento for disparado, a parte do sistema que tem interesse

executar o que for necessario. Para isto, serd necessario criar uma classe.

Para isso no projeto livraria , foi criada uma classe chamada LogPhase , no pacote br.com.alura.livraria.util :

: New Java Class
Java Class
Create a new Java class. @

Source folder: (livraria/src/main/java Il Browse...

Package: | br.com.alura.livraria.util Browse...

(") Enclosing type: Browse...

Name: | LogPhase| |

Modifiers: © public () package privake protected

(") abstract [Final static

Superclass: |'iava.lang.0bject Il Browse..

Interfaces: Add...
Remove

Which method stubs would you like to create?
(") public static void main(5tring[] args)
) Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)
[Generate comments

@ < Back Next > Cancel Finish

Nesta classe, foi criado um método void , que recebe como parametro o tipo que desejamos observar. Nesse caso um

PhaseEvent . O método apenas imprime uma mensagem no Console, com o id da fase:

public class LogPhase {

public void log(@Observes PhaseEvent phaseEvent) {
System.out.println("FASE: " + phaseEvent.getPhaseId());

No PhaseListenerGenerico , é necessario notificar quem esta observando o evento. Para fazer isso, € utilizado um objeto do
CDI chamado Event - atrelado ao objeto que esta sendo observado.

https://cursos.alura.com.br/course/cdi-usando-umas-das-principais-espeficacoes-do-javaee/task/21562

1/9

12/07/2017 CDI 1.2: Aula 5 - Atividade 2 Mais sobre observers | Alura - Cursos online de tecnologia

Vamos receber o Event viainjecdo de dependéncias, e nos métodos vamos disparar o evento, por meio da chamada ao
método fire() , que recebe com argumento o PhaseEvent .
public class PhaselListenerGenerico implements PhaselListener {
private static final long serialVersionUID = 4332180564534271099L;

@Inject
private Event<PhaseEvent> observer;

@Override
public void afterPhase(PhaseEvent event) {
observer.fire(event);

@Override
public void beforePhase(PhaseEvent event) {
observer.fire(event);

@Override
public PhaseId getPhaseId() {
return PhaseId.ANY_PHASE;

Da forma que implementamos, o primeiro ponto é que o evento sera disparado antes e depois da phase, entdo o LogPhase ira

imprimir a mensagem duas vezes no console. Queremos que ele imprima a mensagem apenas uma vez.

Mais ainda: queremos poder observar o objeto em um determinado momento, que pode ser antes ou depois. E para uma

determinada phase.

Se observarmos o Autorizador (pacote br.com.alura.livraria.util), queremos observar apenas o afterPhase para a phase

br.com.alura.livraria.util . No LogPhase , poderiamos fazer algo como:

public void log(@Observes @After @RestoreView PhaseEvent phaseEvent) {
System.out.println("FASE: " + phaseEvent.getPhaseId());

Nos observer, também é possivel utilizar anotagdes para qualificar o evento observado. Serd necessario criar as anotacoes

@After e Before , bem como uma anotacéo para cada fase.

Vamos iniciar criando a anotacdo @Before , no pacote br.com.alura.alura_lib.jsf.phaselistener.annotation :

https://cursos.alura.com.br/course/cdi-usando-umas-das-principais-espeficacoes-do-javaee/task/21562 2/9

12/07/2017 CDI 1.2: Aula 5 - Atividade 2 Mais sobre observers | Alura - Cursos online de tecnologia

. New Annotation Type

Annotation Type

Create a new annotation type. @

Source folder: | alura-lib/src/main/java || Browse...
o)
Package: | br.com.alura.alura_lib.jsf.phaselistener.annotation| | Browse...
[Enclosing kype: Browse...
Name: |' Before
Modifiers: © public () package private protected
[7) Add @Retention: Source Class Runtime
(] Add @Target: Type Field Method
Parameter Constructor Local variable
Annotation type Package Type parameter
Type use
(] Add @Documented
Do you want to add comments? (Configure templates and default value here)
[Generate comments
@ <Back Next > Cancel Finish

A anotagdo @Before éum qualificador:

@Qualifier
@Target(ElementType.PARAMETER)
@Retention(RetentionPolicy.RUNTIME)
public @interface Before {

}

Dentro do mesmo pacote, foi criada a anotagdo @After , paraindicar que se deseja observar o afterPhase() :

@Qualifier
@Target(ElementType.PARAMETER)
@Retention(RetentionPolicy.RUNTIME)
public @interface After {

}

No PhaseListenerGenerico , no momento em que estamos disparando o evento, é necessario indicar qual momento estamos
notificando. Isso é possivel por meio do método select() , onde passamos um qualificador. Ndo podemos passar a anotacéo
diretamente como argumento para um método. Por esse motivo, é necessario utilizar a classe abstrata AnnotationLiteral .

Por ser abstrata, precisamos implementar a classe, mas nao é necessario escrever algum cédigo dentro dela, no nosso caso:

@Override
public void afterPhase(PhaseEvent event) {
observer
.select(new AnnotationLiteral<After>() {})
.fire(event);

https://cursos.alura.com.br/course/cdi-usando-umas-das-principais-espeficacoes-do-javaee/task/21562 3/9

12/07/2017 CDI 1.2: Aula 5 - Atividade 2 Mais sobre observers | Alura - Cursos online de tecnologia

}

@Override
public void beforePhase(PhaseEvent event) {
observer
.select(new AnnotationLiteral<Before>() {})
.fire(event);

Perceba que dentro dos métodos, o codigo é bem similar, o que muda é apenas a anotacdo que estamos passando. Esse
comportamento serd isolado em uma classe chamada PhaseListenerObserver , no pacote

br.com.alura.alura_lib.jsf.phaselistener .

Vamos criar uma interface fluente, onde os métodos after() e before() retornam um proprio objeto. O atributo momento é

a anotacdo que representa o momento a ser observado. E o método fire() dispara o evento para o momento.

public class PhaselListenerObserver {

@Inject
private Event<PhaseEvent> observer;
private Annotation momento;

public PhaselListenerObserver after() {
this.momento = new AnnotationLiteral<After>(){};
return this;

public PhaselListenerObserver before() {
this.momento = new AnnotationLiteral<Before>(){};
return this;

}
public void fire(PhaseEvent phaseEvent) {
observer
.select(momento)
.fire(phaseEvent);

Na classe PhaseListenerGenerico , vamos receber o PhaselListenerObserver , em vez de receber um Event . Nos métodos
afterPhase() e beforePhase() , basta realizar a chamada aos método after() e before() , disparando o evento em
seguida, por meio do método fire() .

public class PhaselListenerGenerico implements PhaselListener {

private static final long serialVersionUID = 4332180564534271099L;

@Inject
private PhaselListenerObserver observer;

@Override
public void afterPhase(PhaseEvent event) {

observer

https://cursos.alura.com.br/course/cdi-usando-umas-das-principais-espeficacoes-do-javaee/task/21562

4/9

12/07/2017 CDI 1.2: Aula 5 - Atividade 2 Mais sobre observers | Alura - Cursos online de tecnologia

.after()
.fire(event);

@Override
public void beforePhase(PhaseEvent event) {
observer
.before()
.fire(event);

// getPhaseId()

Agora resta criar os qualificadores para as fases. Mas no JSF, temos seis fases, entdo seria uma anotago para cada fase.

Nesse caso vamos criar uma anotagdo que contém um atributo representando qual fase sera observada.

No pacote br.com.alura.alura_lib.jsf.phaselistener.annotation , criamos uma anotacdo chamada Phase . Queremos ter

um value() dotipo PhaseId .Mas o cddigo a seguir ndo compila:

@Qualifier
@Target(ElementType.PARAMETER)
@Retention(RetentionPolicy.RUNTIME)
public @interface Phase {

PhaseId value();

Isso ocorre porque o atributo da anotagdo tem que ser um tipo primitivo, uma String , uma Enum , uma anota¢ao ou um
array de uma dimensdo. Para resolver o problema, vamos criar um Enum dentro da anotagdo, onde serdo listadas todas as

fases do JSF.

Vamos passar cada uma dessas fases para uma atributo da Enum :

@Qualifier

@Target (ElementType.PARAMETER)
@Retention(RetentionPolicy.RUNTIME)
public @interface Phase {

Phases value();

enum Phases {
RESTORE_VIEW(PhaseId.RESTORE_VIEW),
APPLY_REQUEST_VALUES(PhaseId.APPLY_REQUEST_VALUES),
PROCESS_VALIDATIONS(PhaseId.PROCESS_VALIDATIONS),
UPDATE_MODEL_VALUES(PhaseId.UPDATE_MODEL_VALUES),
INVOKE_APPLICATION(PhaseId.INVOKE_APPLICATION),
RENDER_RESPONSE (PhaseId.RENDER_RESPONSE);

private Phaseld phaseld;

Phases(PhaselId phaseld) {
this.phaseld = phaseld;

https://cursos.alura.com.br/course/cdi-usando-umas-das-principais-espeficacoes-do-javaee/task/21562 5/9

12/07/2017 CDI 1.2: Aula 5 - Atividade 2 Mais sobre observers | Alura - Cursos online de tecnologia

public PhaseId getPhaseId() {
return phaseld;

No projeto livraria,na classe LogPhase , vamos passar a utilizar o seguinte c6digo:

public void log(@Observes @After @Phase(Phases.RESTORE_VIEW) PhaseEvent phaseEvent) {
System.out.println("FASE: " + phaseEvent.getPhaseId());

No PhaseListenerObserver , na biblioteca, vamos adicionar um novo select() , para utilizar a anotacdo @phase :

public void fire(PhaseEvent phaseEvent) {
observer
.select(momento)
.select(new AnnotationLiteral<Phase>(){})
.fire(phaseEvent);

Mas como foi instanciado um AnnotationLiteral , ndo temos o valor do atributo value . Vimos que AnnotationLiteral é
uma classe abstrata, entdo para utilizarmos de uma forma mais natural, instanciando um objeto, vamos criar uma nova

classe. Essa classe se chamara PhaseLiteral e ficard no pacote br.com.alura.alura_lib.jsf.phaselistener.annotation .

No PhaseListenerObserver , queremos instanciar o PhaseLiteral e passar a fase que desejamos observar. Obtemos a fase por

meio do PhaseEvent :

public void fire(PhaseEvent phaseEvent) {
observer
.select(momento)
.select(new PhaselLiteral(phaseEvent.getPhaseId()))
.fire(phaseEvent);

A classe PhaseLiteral precisa extender de AnnotationLiteral eimplementar a anotacdo @Phase (que é uma interface

[public @interface Phase]). Dessa forma vamos ter que implementar o método value() .

Vamos adicionar o construtor que recebe o phaseld :

public class PhaselLiteral extends AnnotationLiteral<Phase> implements Phase {
private static final long serialVersionUID = 3320747441506123437L;

public PhaselLiteral(PhaseId phaseld) {

https://cursos.alura.com.br/course/cdi-usando-umas-das-principais-espeficacoes-do-javaee/task/21562

6/9

12/07/2017 CDI 1.2: Aula 5 - Atividade 2 Mais sobre observers | Alura - Cursos online de tecnologia

@Override
public Phases value() {
return null;

Agora precisamos retornar uma fase. A enum Phases possui seus valores iguais aos nomes da fases do JSF, podemos obter a
Phase por meio do método valueof() , passando o phaseld.getName() :
public class PhaseLiteral extends AnnotationLiteral<Phase> implements Phase {
private static final long serialVersionUID = 3320747441506123437L;
private Phases phases;
public PhaselLiteral(PhaseId phaseld) {

phases = Phase.Phases.valueOf(phaseld.getName());

@Override
public Phases value() {
return phases;

Agora precisamos instalar o alura-1lib no repositdrio local para que possamos testar as alteracdes. Em seguida rodamos um

"Maven > Update Project..." no projeto livraria .

A classe LogPhase ainda ndo compilou, pois faltam os imports. Para isso basta utilizar o atalho "Ctrl + Shift + O".

O que acontece se removermos o qualificador @phase , por exemplo? Simplesmente sera observador o affer e todos os

eventos, ja que nao estamos sendo especificos. Vamos remover e ver o resultado:

public class LogPhase {

public void log(@Observes @After PhaseEvent phaseEvent) {
System.out.println("FASE: " + phaseEvent.getPhaseId());

Por fim, fazemos um "Clean" e iniciamos o Tomcat. Mas recebemos um erro. Um NullPointerException na classe

PhaseListenerGenerico , indicando que o atributo observer esta nulo:

https://cursos.alura.com.br/course/cdi-usando-umas-das-principais-espeficacoes-do-javaee/task/21562 719

12/07/2017 CDI 1.2: Aula 5 - Atividade 2 Mais sobre observers | Alura - Cursos online de tecnologia

HTTP Status 500 -

[T Exception report

The server encountered an internal error that prevented it from fulfilling this request.
fexception|

javax.servlet.ServletException
javax.faces.webapp.FacesServlet.service(FacesServlet.java:671)
org.apache.tomcat.websocket.server . WsFilter.doFilter(WsFilter.java:52)

java.lang.NullPointerException
br.com.alura.alura_lib.jsf.phaselistener.PhaseListenerGenerico.beforePhase(PhaseListenerGenerico.java:25)
com.sun.faces.lifecycle.Phase. handleBeforePhase(Phase. java:228)
com.sun.faces.lifecycle.Phase.doPhase (Phase.java:99)
com.sun.faces.lifecycle.RestoreViewPhase.doPhase(RestoreViewPhase. java:123)
com.sun.faces.lifecycle.LifecycleImpl.execute(LifecycleImpl. java:198)
javax.faces.webapp.FacesServlet.service(FacesServlet.java:658)
org.apache.tomcat.websocket.server.WsFilter.doFilter{WsFilter.java:52)

The full stack trace of the root cause is available in the Apache Tomcat/8.0.39 logs.

Apache Tomcat/8.0.39

Mas estamos injetando o atributo! O que pode estar acontecendo? Acontece que a classe PhaselListenerGenerico € gerenciada

pelo JSF, e ndo pelo CDI. Na préximo aula vamos ver como resolver esse problema.

https://cursos.alura.com.br/course/cdi-usando-umas-das-principais-espeficacoes-do-javaee/task/21562 8/9

12/07/2017 CDI 1.2: Aula 5 - Atividade 2 Mais sobre observers | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/cdi-usando-umas-das-principais-espeficacoes-do-javaee/task/21562 9/9

