
12/07/2017 CDI 1.2: Aula 5 - Atividade 2 Mais sobre observers | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/cdi-usando-umas-das-principais-espeficacoes-do-javaee/task/21562 1/9

 02

Mais sobre observers

Transcrição

Agora falta implementar a parte de quem vai �car esperando receber as noti�cações. Para isso vamos implementar o design

pattern observer.

Alguém irá �car observando um determinado evento e quando o evento for disparado, a parte do sistema que tem interesse

executar o que for necessário. Para isto, será necessário criar uma classe.

Para isso no projeto livraria , foi criada uma classe chamada LogPhase , no pacote br.com.alura.livraria.util :

Nesta classe, foi criado um método void , que recebe como parâmetro o tipo que desejamos observar. Nesse caso um

PhaseEvent . O método apenas imprime uma mensagem no Console, com o id da fase:

public class LogPhase {

 public void log(@Observes PhaseEvent phaseEvent) {
 System.out.println("FASE: " + phaseEvent.getPhaseId());
 }
}

No PhaseListenerGenerico , é necessário noti�car quem está observando o evento. Para fazer isso, é utilizado um objeto do

CDI chamado Event - atrelado ao objeto que está sendo observado.

12/07/2017 CDI 1.2: Aula 5 - Atividade 2 Mais sobre observers | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/cdi-usando-umas-das-principais-espeficacoes-do-javaee/task/21562 2/9

Vamos receber o Event via injeção de dependências, e nos métodos vamos disparar o evento, por meio da chamada ao

método fire() , que recebe com argumento o PhaseEvent .

public class PhaseListenerGenerico implements PhaseListener {

 private static final long serialVersionUID = 4332180564534271099L;

 @Inject
 private Event<PhaseEvent> observer;

 @Override
 public void afterPhase(PhaseEvent event) {
 observer.fire(event);
 }

 @Override
 public void beforePhase(PhaseEvent event) {
 observer.fire(event);
 }

 @Override
 public PhaseId getPhaseId() {
 return PhaseId.ANY_PHASE;
 }
}

Da forma que implementamos, o primeiro ponto é que o evento será disparado antes e depois da phase, então o LogPhase irá

imprimir a mensagem duas vezes no console. Queremos que ele imprima a mensagem apenas uma vez.

Mais ainda: queremos poder observar o objeto em um determinado momento, que pode ser antes ou depois. E para uma

determinada phase.

Se observarmos o Autorizador (pacote br.com.alura.livraria.util), queremos observar apenas o afterPhase para a phase

br.com.alura.livraria.util . No LogPhase , poderíamos fazer algo como:

public void log(@Observes @After @RestoreView PhaseEvent phaseEvent) {
 System.out.println("FASE: " + phaseEvent.getPhaseId());
}

Nos observer, também é possível utilizar anotações para quali�car o evento observado. Será necessário criar as anotações

@After e Before , bem como uma anotação para cada fase.

Vamos iniciar criando a anotação @Before , no pacote br.com.alura.alura_lib.jsf.phaselistener.annotation :

12/07/2017 CDI 1.2: Aula 5 - Atividade 2 Mais sobre observers | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/cdi-usando-umas-das-principais-espeficacoes-do-javaee/task/21562 3/9

A anotação @Before é um quali�cador:

@Qualifier
@Target(ElementType.PARAMETER)
@Retention(RetentionPolicy.RUNTIME)
public @interface Before {
}

Dentro do mesmo pacote, foi criada a anotação @After , para indicar que se deseja observar o afterPhase() :

@Qualifier
@Target(ElementType.PARAMETER)
@Retention(RetentionPolicy.RUNTIME)
public @interface After {
}

No PhaseListenerGenerico , no momento em que estamos disparando o evento, é necessário indicar qual momento estamos

noti�cando. Isso é possível por meio do método select() , onde passamos um quali�cador. Não podemos passar a anotação

diretamente como argumento para um método. Por esse motivo, é necessário utilizar a classe abstrata AnnotationLiteral .

Por ser abstrata, precisamos implementar a classe, mas não é necessário escrever algum código dentro dela, no nosso caso:

@Override
public void afterPhase(PhaseEvent event) {
 observer
 .select(new AnnotationLiteral<After>() {})
 .fire(event);

12/07/2017 CDI 1.2: Aula 5 - Atividade 2 Mais sobre observers | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/cdi-usando-umas-das-principais-espeficacoes-do-javaee/task/21562 4/9

}

@Override
public void beforePhase(PhaseEvent event) {
 observer
 .select(new AnnotationLiteral<Before>() {})
 .fire(event);
}

Perceba que dentro dos métodos, o código é bem similar, o que muda é apenas a anotação que estamos passando. Esse

comportamento será isolado em uma classe chamada PhaseListenerObserver , no pacote

br.com.alura.alura_lib.jsf.phaselistener .

Vamos criar uma interface �uente, onde os métodos after() e before() retornam um próprio objeto. O atributo momento é

a anotação que representa o momento a ser observado. E o método fire() dispara o evento para o momento.

public class PhaseListenerObserver {

 @Inject
 private Event<PhaseEvent> observer;
 private Annotation momento;

 public PhaseListenerObserver after() {
 this.momento = new AnnotationLiteral<After>(){};
 return this;
 }

 public PhaseListenerObserver before() {
 this.momento = new AnnotationLiteral<Before>(){};
 return this;
 }

 public void fire(PhaseEvent phaseEvent) {
 observer
 .select(momento)
 .fire(phaseEvent);
 }
}

Na classe PhaseListenerGenerico , vamos receber o PhaseListenerObserver , em vez de receber um Event . Nos métodos

afterPhase() e beforePhase() , basta realizar a chamada aos método after() e before() , disparando o evento em

seguida, por meio do método fire() .

public class PhaseListenerGenerico implements PhaseListener {

 private static final long serialVersionUID = 4332180564534271099L;

 @Inject
 private PhaseListenerObserver observer;

 @Override
 public void afterPhase(PhaseEvent event) {
 observer

12/07/2017 CDI 1.2: Aula 5 - Atividade 2 Mais sobre observers | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/cdi-usando-umas-das-principais-espeficacoes-do-javaee/task/21562 5/9

 .after()
 .fire(event);
 }

 @Override
 public void beforePhase(PhaseEvent event) {
 observer
 .before()
 .fire(event);
 }

 // getPhaseId()
}

Agora resta criar os quali�cadores para as fases. Mas no JSF, temos seis fases, então seria uma anotação para cada fase.

Nesse caso vamos criar uma anotação que contém um atributo representando qual fase será observada.

No pacote br.com.alura.alura_lib.jsf.phaselistener.annotation , criamos uma anotação chamada Phase . Queremos ter

um value() do tipo PhaseId . Mas o código a seguir não compila:

@Qualifier
@Target(ElementType.PARAMETER)
@Retention(RetentionPolicy.RUNTIME)
public @interface Phase {

 PhaseId value();
}

Isso ocorre porque o atributo da anotação tem que ser um tipo primitivo, uma String , uma Enum , uma anotação ou um

array de uma dimensão. Para resolver o problema, vamos criar um Enum dentro da anotação, onde serão listadas todas as

fases do JSF.

Vamos passar cada uma dessas fases para uma atributo da Enum :

@Qualifier
@Target(ElementType.PARAMETER)
@Retention(RetentionPolicy.RUNTIME)
public @interface Phase {

 Phases value();

 enum Phases {
 RESTORE_VIEW(PhaseId.RESTORE_VIEW),
 APPLY_REQUEST_VALUES(PhaseId.APPLY_REQUEST_VALUES),
 PROCESS_VALIDATIONS(PhaseId.PROCESS_VALIDATIONS),
 UPDATE_MODEL_VALUES(PhaseId.UPDATE_MODEL_VALUES),
 INVOKE_APPLICATION(PhaseId.INVOKE_APPLICATION),
 RENDER_RESPONSE(PhaseId.RENDER_RESPONSE);

 private PhaseId phaseId;

 Phases(PhaseId phaseId) {
 this.phaseId = phaseId;

12/07/2017 CDI 1.2: Aula 5 - Atividade 2 Mais sobre observers | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/cdi-usando-umas-das-principais-espeficacoes-do-javaee/task/21562 6/9

 }

 public PhaseId getPhaseId() {
 return phaseId;
 }
 }
}

No projeto livraria , na classe LogPhase , vamos passar a utilizar o seguinte código:

public void log(@Observes @After @Phase(Phases.RESTORE_VIEW) PhaseEvent phaseEvent) {
 System.out.println("FASE: " + phaseEvent.getPhaseId());
}

No PhaseListenerObserver , na biblioteca, vamos adicionar um novo select() , para utilizar a anotação @Phase :

public void fire(PhaseEvent phaseEvent) {
 observer
 .select(momento)
 .select(new AnnotationLiteral<Phase>(){})
 .fire(phaseEvent);
}

Mas como foi instanciado um AnnotationLiteral , não temos o valor do atributo value . Vimos que AnnotationLiteral é

uma classe abstrata, então para utilizarmos de uma forma mais natural, instanciando um objeto, vamos criar uma nova

classe. Essa classe se chamará PhaseLiteral e �cará no pacote br.com.alura.alura_lib.jsf.phaselistener.annotation .

No PhaseListenerObserver , queremos instanciar o PhaseLiteral e passar a fase que desejamos observar. Obtemos a fase por

meio do PhaseEvent :

public void fire(PhaseEvent phaseEvent) {
 observer
 .select(momento)
 .select(new PhaseLiteral(phaseEvent.getPhaseId()))
 .fire(phaseEvent);
}

A classe PhaseLiteral precisa extender de AnnotationLiteral e implementar a anotação @Phase (que é uma interface

[public @interface Phase]). Dessa forma vamos ter que implementar o método value() .

Vamos adicionar o construtor que recebe o phaseId :

public class PhaseLiteral extends AnnotationLiteral<Phase> implements Phase {

 private static final long serialVersionUID = 3320747441506123437L;

 public PhaseLiteral(PhaseId phaseId) {

 }

12/07/2017 CDI 1.2: Aula 5 - Atividade 2 Mais sobre observers | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/cdi-usando-umas-das-principais-espeficacoes-do-javaee/task/21562 7/9

 @Override
 public Phases value() {
 return null;
 }
}

Agora precisamos retornar uma fase. A enum Phases possui seus valores iguais aos nomes da fases do JSF, podemos obter a

Phase por meio do método valueOf() , passando o phaseId.getName() :

public class PhaseLiteral extends AnnotationLiteral<Phase> implements Phase {

 private static final long serialVersionUID = 3320747441506123437L;

 private Phases phases;

 public PhaseLiteral(PhaseId phaseId) {
 phases = Phase.Phases.valueOf(phaseId.getName());
 }

 @Override
 public Phases value() {
 return phases;
 }
}

Agora precisamos instalar o alura-lib no repositório local para que possamos testar as alterações. Em seguida rodamos um

"Maven > Update Project..." no projeto livraria .

A classe LogPhase ainda não compilou, pois faltam os imports. Para isso basta utilizar o atalho "Ctrl + Shi� + O".

O que acontece se removermos o quali�cador @Phase , por exemplo? Simplesmente será observador o a�er e todos os

eventos, já que não estamos sendo especí�cos. Vamos remover e ver o resultado:

public class LogPhase {

 public void log(@Observes @After PhaseEvent phaseEvent) {
 System.out.println("FASE: " + phaseEvent.getPhaseId());
 }
}

Por �m, fazemos um "Clean" e iniciamos o Tomcat. Mas recebemos um erro. Um NullPointerException na classe

PhaseListenerGenerico , indicando que o atributo observer está nulo:

12/07/2017 CDI 1.2: Aula 5 - Atividade 2 Mais sobre observers | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/cdi-usando-umas-das-principais-espeficacoes-do-javaee/task/21562 8/9

Mas estamos injetando o atributo! O que pode estar acontecendo? Acontece que a classe PhaseListenerGenerico é gerenciada

pelo JSF, e não pelo CDI. Na próximo aula vamos ver como resolver esse problema.

12/07/2017 CDI 1.2: Aula 5 - Atividade 2 Mais sobre observers | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/cdi-usando-umas-das-principais-espeficacoes-do-javaee/task/21562 9/9

