
17/07/2017 ASP.NET MVC 5: Aula 4 - Atividade 2 Lidando com Formulários e o Cadastro de Produtos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/desenvolvimento-web-asp-net-mvc-5/task/4640 1/7

 02

Lidando com Formulários e o Cadastro de Produtos

Temos um sistema capaz de listar produtos cadastrados, vamos agora incrementá-lo com a capacidade de cadastrar novos

produtos.

Para realizar o cadastro, precisamos inicialmente de um formulário que receba os dados necessários para se criar um novo

produto.

<form action="/Produto/Adiciona">
 <label for="nome">Nome:</label>
 <input id="nome" name="nome" />

 <label for="preco">Preço:</label>
 <input id="preco" name="preco" />

 <label for="quantidade">Quantidade:</label>
 <input id="quantidade" name="quantidade" />

 <label for="descricao">Descrição:</label>
 <input id="descricao" name="descricao" />

 <label for="categoria">Categoria:</label>
 <input id="categoria" name="categoriaId" />

 <input type="submit" />
</form>

Mas como mencionado no começo do curso, esse formulário faz parte da camada de visualização do MVC, logo precisamos

criar um método no controller que, por enquanto, não faz nada a não ser redirecionar para a view com o formulário. Vamos

então adicionar um método chamado Form dentro do ProdutoController .

public ActionResult Form()
{
 return View();
}

Podemos ver o formulário gerado acessando o endereço: /Produto/Form com o navegador.

Recebendo as informações do formulário na action

Vamos agora criar um novo método no ProdutoController que será responsável por receber as informações que foram

enviadas pelo formulário. Como no formulário colocamos a action /Produto/Adiciona , então os dados do formulário serão

enviados para o método Adiciona do ProdutoController :

17/07/2017 ASP.NET MVC 5: Aula 4 - Atividade 2 Lidando com Formulários e o Cadastro de Produtos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/desenvolvimento-web-asp-net-mvc-5/task/4640 2/7

public ActionResult Adiciona()
{
 // implementação da action
}

Dentro dessa action, para utilizarmos as informações que foram enviadas pelo navegador, precisamos declarar parâmetros

no método que possuem o mesmo nome do campo de texto no html (atributo name da tag input).

public ActionResult Adiciona(String nome, float preco, int quantidade, String descricao, int categoriaId

Dentro desse método, precisamos instanciar um novo produto com as informações recebidas:

Produto produto = new Produto() {
 Nome = nome,
 Preco = preco,
 Quantidade = quantidade,
 Descricao = descricao,
 CategoriaId = categoriaId
};

E, por �m, utilizaremos o DAO para adicionar o produto no banco de dados:

ProdutosDAO dao = new ProdutosDAO();
dao.Adiciona(produto);

O código �nal de nossa action �ca da seguinte forma:

public ActionResult Adiciona(String nome, float preco, int quantidade, String descricao, int categoriaId
{
 Produto produto = new Produto() {
 Nome = nome,
 Preco = preco,
 Quantidade = quantidade,
 Descricao = descricao,
 CategoriaId = categoriaId
 };
 ProdutosDAO dao = new ProdutosDAO();
 dao.Adiciona(produto);
 return View();
}

Repare que os parâmetros enviados pelo formulário são automaticamente convertidos para os tipos certos. Essa conversão é

realizada pelo ASP.NET MVC.

Envio de dados para uma action através de model binders

17/07/2017 ASP.NET MVC 5: Aula 4 - Atividade 2 Lidando com Formulários e o Cadastro de Produtos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/desenvolvimento-web-asp-net-mvc-5/task/4640 3/7

Em nossa solução para o problema de cadastro de produtos, foi necessário instanciar manualmente a classe Produto

utilizando os parâmetros da requisição, porém seria muito mais interessante se o método recebesse como argumento uma

instância de Produto populada com os parâmetros da requisição.

public ActionResult Adiciona(Produto produto)
{
 ProdutosDAO dao = new ProdutosDAO();
 dao.Adiciona(produto);
 return View();
}

Para que esse código funcione, os campos do formulário devem ter nome da forma nomeDaVariavel.NomeDoAtributo , por

exemplo, se quisermos que o atributo Nome do produto seja preenchido automaticamente, devemos criar um formulário

HTML que tenha um campo chamado produto.Nome : <input name="produto.Nome" /> .

<form action="/Produto/Adiciona">
 <label for="nome">Nome:</label>
 <input id="nome" name="produto.Nome" />

 <label for="preco">Preço:</label>
 <input id="preco" name="produto.Preco" />

 <label for="quantidade">Quantidade:</label>
 <input id="quantidade" name="produto.Quantidade" />

 <label for="descricao">Descrição:</label>
 <input id="descricao" name="produto.Descricao" />

 <label for="categoria">Categoria:</label>
 <input id="categoria" name="produto.CategoriaId" />

 <input type="submit" />
</form>

A variável produto recebida pelo método da classe controladora é instanciada e preenchida por um componente do ASP.NET

MVC conhecido como Model Binder.

Os model binders do ASP.NET MVC são componentes que convertem os parâmetros da requisição para objetos. Tanto no

primeiro caso, em que recebíamos tipos simples, quanto no segundo caso, em que recebemos uma instância de produto, é o

model binder que realiza a conversão de tipos.

Formulários utilizando o Post

Ao enviarmos o formulário que desenvolvemos anteriormente, podemos ver que a url mostrada pelo navegador contem as

informações preenchidas no formulário, isso acontece pois essa é a forma de envio de informações utilizada por padrão pelo

navegador, o método de envio chamado Get.

O Get é geralmente utilizado quando desenvolvemos uma busca dentro da aplicação, pois como todas as informações do

formulário de busca estão na url do navegador, podemos facilmente compartilhar os resultados com outras pessoas.

17/07/2017 ASP.NET MVC 5: Aula 4 - Atividade 2 Lidando com Formulários e o Cadastro de Produtos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/desenvolvimento-web-asp-net-mvc-5/task/4640 4/7

Mas em um cadastro de informações não queremos deixar todas as informações expostas na url, nesses casos, podemos

utilizar um outro método de envio chamado post. Para utilizarmos o post como método de envio do formulário, precisamos

apenas colocar o atributo method na declaração da tag form:

<form action="/Produto/Adiciona" method="post">
 <!-- código do formulário -->
</form>

Depois dessa modi�cação, se testarmos novamente o cadastro de produtos, o navegador mostrará a url /Produto/Adiciona

sem as informações que foram preenchidas no formulário.

Vimos que podemos enviar tanto requisições do tipo Get quanto do tipo Post para a action Adiciona do ProdutoController

que o cadastro continuará funcionando, porém essa action deveria aceitar apenas requisições do tipo post, pois não estamos

implementando uma busca. Quando queremos limitar o tipo de requisição que uma action recebe para o tipo post,

utilizamos uma anotação (attribute do C#) chamada HttpPostAttribute sobre a declaração do método:

[HttpPostAttribute]
public ActionResult Adiciona(Produto produto)

Como por convenção toda anotação do C# termina com o su�xo Attribute , podemos simpli�car o código para:

[HttpPost]
public ActionResult Adiciona(Produto produto)

Da mesma forma que podemos utilizar o HttpPostAttribute para aceitar apenas requisições do tipo post, também temos o

HttpGetAttribute para aceitar apenas requisições do tipo Get.

Redirecionando para a lista de produtos

Após a execução do método Adiciona , o ASP.NET MVC tentará renderizar a view Produto/Adiciona.cshtml , porém

queremos que o usuário seja redirecionado para a página de listagem de produtos (Index). Poderíamos repetir o mesmo

código que �zemos no método Index aqui, mas isso não faz sentido.

Para contornar esse problema, utilizaremos um novo tipo de resultado de�nido na classe Controller , o RedirectToAction .

public ActionResult Adiciona(Produto produto)
{
 ProdutosDAO dao = new ProdutosDAO();
 dao.Adiciona(produto);
 return RedirectToAction("Index");
}

O RedirectToAction redirecionará o usuário para o método Index do controller atual (ProdutoController).

Melhorando a usabilidade do formulário com o Combo Box

Repare que no formulário que criamos, o usuário precisa digitar o id de uma categoria existente no banco de dados.

17/07/2017 ASP.NET MVC 5: Aula 4 - Atividade 2 Lidando com Formulários e o Cadastro de Produtos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/desenvolvimento-web-asp-net-mvc-5/task/4640 5/7

<label for="categoria">Categoria:</label>
<input id="categoria" name="categoriaId" />

Mas o id não é uma informação que o usuário deveria conhecer. Seria mais interessante se pudéssemos selecionar o nome a

partir de uma lista de categorias cadastradas.

Vamos então utilizar a tag html select para exibir os nomes das categorias existentes e enviar o valor do Id selecionado

para o servidor

<label for="categoria">Categoria:</label>
<select id="categoria" name="produto.CategoriaId">
 @foreach(var categoria in ViewBag.Categorias)
 {
 <option value="@categoria.Id">@categoria.Nome</option>
 }
</select>

E agora modi�car nosso formulário para utilizar a tag select :

<form action="/Produto/Adiciona">
 <label for="nome">Nome:</label>
 <input id="nome" name="produto.Nome" />

 <label for="preco">Preço:</label>
 <input id="preco" name="produto.Preco" />

 <label for="quantidade">Quantidade:</label>
 <input id="quantidade" name="produto.Quantidade" />

 <label for="descricao">Descrição:</label>
 <input id="descricao" name="produto.Descricao" />

 <label for="categoria">Categoria:</label>
 <select id="categoria" name="produto.CategoriaId">
 @foreach(var categoria in ViewBag.Categorias)
 {
 <option value="@categoria.Id">@categoria.Nome</option>
 }
 </select>

 <input type="submit" />
</form>

Agora precisamos fazer com que a variável ViewBag.Categorias contenha a lista de categorias. Para isso, vamos modi�car o

método Form do ProdutoController :

public ActionResult Form()
{
 CategoriasDAO dao = new CategoriasDAO();
 IList<CategoriaDoProduto> categorias = dao.Lista();
 ViewBag.Categorias = categorias;

17/07/2017 ASP.NET MVC 5: Aula 4 - Atividade 2 Lidando com Formulários e o Cadastro de Produtos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/desenvolvimento-web-asp-net-mvc-5/task/4640 6/7

 return View();
}

Visualize seu formulário pela url /Produto/Form .

17/07/2017 ASP.NET MVC 5: Aula 4 - Atividade 2 Lidando com Formulários e o Cadastro de Produtos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/desenvolvimento-web-asp-net-mvc-5/task/4640 7/7

