25/04/2020 SOLID com Java: Aula 1 - Atividade 2 Coeséo e o Single Responsibility Principle | Alura - Cursos online de tecnologia

O o2
Coesao e o Single Responsibility Principle

0la! Bem-vindo ao curso de Orientacéo a objetos avancado e SOLID do Alura. Neste curso eu vou discutir com vocés
todas aquelas ideias de Orientac?o a objetos, como coesdo, acoplamento, encapsulamento etc., s6 que dessa vez com

um ponto de vista um pouquinho mais avancado, um pouquinho mais profundo nesses assuntos.

Vou discutir com vocés como conseguir fazer classes que sdo bastante coesas, que sdo pouco acopladas, como evitar
fazer classes e métodos que ndo estdo bem encapsulados etc. e tal. Pra esse curso, eu espero que vocé conheca um
pouquinho de Orientacéo a objetos, ja tenha alguma pratica com alguma linguagem que da suporte. Aqui no curso, vou

usar Java, mas tudo o que eu discutir vai funcionar para todas as linguagens que sdo 0O. T4 legal?

A primeira aula vai ser sobre coesdo. Todo mundo ja ouviu falar de coes?o, certo? E tem aquela maxima 14, “Olha, todas
as suas classes, elas tém que ser sempre muito coesas.” Agora a pergunta é: como fazer isso? Como criar classes que sdo

coesas o tempo inteiro? Como evitar criar classes que tenham baixa coesao?

E para discutir isso, eu vou mostrar um cédigo que parece cdédigo do mundo real. D4 uma olhada. Eu tenho aqui a
minha classe CalculadoraDeSalario . Essa classe, dd para ver pelo método calcula , tem por objetivo calcular o saldrio
de um funciondrio. Dado um funcionario, e um cargo que esse funcionario tem, eu tenho uma regra diferente do

célculo do salario dele. Da uma olhada:

public class CalculadoraDeSalario {

public double calcula(Funcionario funcionario) {
if(DESENVOLVEDOR.equals(funcionario.getCargo())) {
return dezOuVintePorcento(funcionario);

if(DBA.equals(funcionario.getCargo()) || TESTER.equals(funcionario.getCargo())) {
return quinzeOuVinteCincoPorcento(funcionario);

throw new RuntimeException(“funcionario invalido");

private double dezOuVintePorcento(Funcionario funcionario) {
if(funcionario.getSalarioBase() > 3000.0) {
return funcionario.getSalarioBase() * 0.8;

}
else {

return funcionario.getSalarioBase() * 0.9;
}

private double quinzeOuVinteCincoPorcento(Funcionario funcionario) {
if(funcionario.getSalarioBase() > 2000.0) {
return funcionario.getSalarioBase() * 0.75;
}
else {
return funcionario.getSalarioBase() * ©.85;

https://cursos.alura.com.br/course/orientacao-a-objetos-avancada-e-principios-solid/task/4942 1/8

25/04/2020 SOLID com Java: Aula 1 - Atividade 2 Coeséo e o Single Responsibility Principle | Alura - Cursos online de tecnologia

Se o cara for desenvolvedor, ele cai nesse método ai 10% ou 20%. Esse método 14 dentro verifica se o saldrio dele é maior
do que tanto, e ai ele d4 um desconto. Caso contrario (else), ele dd um outro desconto. A mesma coisa acontece para
DBA e TESTER . Veja que ambos compartilham a mesma regra, essa regra de 15% ou 25%. E ali, a implementacéo é mais

Ou menos a mesma.

Essa é uma classe que parece bastante com cédigo do mundo real. Certo? Onde eu tenho classes que olham o estado de

um objeto e, a partir dai, decidem qual algoritmo executar, e fazem isso por meio de if se for se while s etc. e tal.

Agora a pergunta é: qual é o problema desse c6digo? Sera que ele é um cddigo coeso? Sera que ele estd muito acoplado?

Vamos 14.

Voltando aqui para ele. Esse cddigo, ele néo é 14 muito coeso, esta certo? Como que eu sei disso? A minha primeira dica
é 0 seguinte, eu sempre paro e penso: “Puxa, serd que essa classe vai parar de crescer? Porque veja so: se a classe é
coesa, ou seja, ela tem uma Unica responsabilidade, ela cuida de apenas uma Unica parte do meu sistema, ela
representa uma Unica entidade. Se essa classe € coesa, ela tem que parar de crescer um dia. Porque as

responsabilidades de uma entidade um dia param de aparecer.

Nesse caso, em particular, ndo. Veja sé. Sempre que eu criar um cargo novo no meu sistema, eu vou ter que alterar essa
classe. Sempre, sempre, sempre. Agora imagina no mundo real, muito mais complexo do que esse cédigo, onde eu
tenho, sei 14, 30, 40, 50 cargos. E imagina que eu tenha 30 regras diferentes. O que vai acontecer com essa classe? Essa

classe vai ficar gigante, ela vai ter 30 regras diferentes. Ta certo? Entdo, ela ndo vai ser nada coesa.

Qual é a consequéncia disso? Um c6digo complicado. Todo mundo sabe a consequéncia de um cédigo complicado,
certo? E mais dificil de manter, é muito mais suscetivel a um bug, porque o cédigo é enorme, vocé vai deixar passar
alguma coisa ali, o reuso é muito menor, porque se a classe faz muita coisa é dificil leva-la pra um outro sistema. Porque

o outro sistema raramente vai precisar de tudo o que ela faz. E assim por diante.

Veja s6, pessoal, que complexidade, um cédigo complicado, ele é bastante discutivel no mundo OO. Porque as vezes eu
posso ter um cédigo complicado, mas dentro de uma classe coesa. E esse tipo de cddigo me incomoda menos. Porque se
eu tenho um método publico, cujo cddigo esta feio, é facil: eu jogo a implementacdo dele fora e escrevo de novo. Tem
um monte de técnica de refatoracéo pra isso. Escrever varidveis com bons nomes, criar métodos privados, extrair para
variaveis locais que explicam melhor o que o algoritmo esta fazendo etc. e tal. Eu nem vou entrar nesse mérito de

refatoracdo, porque é uma outra discusséo e vocé pode até fazer o nosso curso sobre o assunto (o curso de refatoragéo).

Mas aqui, o que me incomoda é que essa classe, além de complicada, ela néo é coesa. Ela vai crescer pra sempre. Entdo,

ela vai dificultar e muito a vida do desenvolvedor.

Veja o sistema hoje. Eu tenho uma CalculadorabeSalario , que tem as varias regras de calculo. E toda vez que surgir
uma regra nova, eu vou ter que enfid-la ai dentro. Esse tipo de cddigo, galera, ainda dificulta a testabilidade. Se eu estou
pensando em teste automatizado, o teste dessa classe vai ser muito complicado. Eu vou ter que escrever uma bateria

imensa pra ela. Dificil, certo? Qual é a ideia?

O que eu estou tentando fazer agora é pegar cada uma das regras que eu tinha de céalculo ? DezOuvintePorCento ,
QuinzeOuVintePorCento , TrintaOuQuarentaPorCento , seild, as regras que forem aparecendo -, e colocar cada uma dessas

regras num unico lugar.

https://cursos.alura.com.br/course/orientacao-a-objetos-avancada-e-principios-solid/task/4942 2/8

25/04/2020 SOLID com Java: Aula 1 - Atividade 2 Coeséo e o Single Responsibility Principle | Alura - Cursos online de tecnologia
Veja s6 o que ia acontecer na pratica. Vou voltar aqui pro meu c6digo. Eu tenho os dois métodos privados, e imagina que
cada um desses métodos privados eu va levar para uma classe em particular. Eu vou extrair um método privado e
colocar numa classe. O que eu vou ganhar? Veja sé que cada uma dessas regras, cada uma dessas classes, sera coesa.
Porque eu vou ter uma classe cuja Unica responsabilidade é entender da regra de DezOuvintePorCento , a outra, de

QuinzeOuVinteCincoPorCento .

Ou seja, cada classe vai entender de uma tnica regra. Se a regra mudar, tudo bem, eu vou 14 e mexo na classe. Mas veja
s0 que ela vai mudar por um Unico motivo. O motivo é se essa regra em particular mudar. Se uma regra nova aparecer,
eu ndo vou nem precisar abrir a classe DezOuQuinzePorCento OuU QuinzeOuVinteCincoPorCento , ndo vou. Vou

simplesmente criar uma nova classe.

Aqui estou criando classes coesas. E como eu optei por tratar a coeso nesse cédigo? Eu, com a minha experiéncia,

percebi que o que muda de um pro outro é basicamente a regra que é aplicada em cada um dos casos. T4 certo?

Eu peguei a regra e coloquei em classes menores. Essas classes serdo mais coesas. Excelente. Eu vou mostrar isso em

co6digo agora pra vocés, fazendo essa refatoragio, pra vocés verem como isso vai ficar muito mais legal.

Agora no Eclipse, vamos 1a. A primeira coisa que eu vou fazer é pegar cada um desses métodos privados e extrair pra

uma classe. Entdo veja, vou criar a classe que eu vou chamar de DezOuVintePorCento .

E vou pegar esse método privado aqui:

private double dezOuVintePorcento(Funcionario funcionario) {
if(funcionario.getSalarioBase() > 3000.0) {
return funcionario.getSalarioBase() * 0.8;

}
else {

return funcionario.getSalarioBase() * 0.9;
}

E vou jogar pra la. Por enquanto deixa assim, estd meio estranho mas tudo bem. Vou fazer a mesma coisa com o

QuinzeOuVinteECincoPorCento . Nova classe:

private double quinzeOuVinteCincoPorcento(Funcionario funcionario) {
if(funcionario.getSalarioBase() > 2000.0) {
return funcionario.getSalarioBase() * 0.75;

}
else {

return funcionario.getSalarioBase() * 0.85;
¥

Legal. A primeira coisa que eu ja percebi. E que veja sé que tem duas coisas em comum entre essas duas classes que eu
acabei de criar, certo? Ambas devolvem um double e recebem um Funcionario , e ambas sdo uma regra de calculo. No

mundo orientado a objetos, a gente vai criar interfaces, certo? E sempre legal programar pra interfaces.

https://cursos.alura.com.br/course/orientacao-a-objetos-avancada-e-principios-solid/task/4942 3/8

25/04/2020 SOLID com Java: Aula 1 - Atividade 2 Coeséo e o Single Responsibility Principle | Alura - Cursos online de tecnologia

No préximo capitulo sobre acoplamento, eu vou discutir a importancia de interfaces. Elas sdo estaveis, etc. e tal. Mas eu

chego la.

Aqui por enquanto eu vou sé criar a interface, entdo uma RegrabDeCalculo , método public double calcula que vai
receber um funciondrio aqui, que eu vou colocar funcionario :

public double calcula(Funcionario funcionario);

Agora eu vou nessas duas regras de negdcio que eu tenho, e vou implementar, implements RegrabDeCalculo . Vou mudar o

método aqui para calcula , o método fica public , certo? Legal.
public class DezOuVintePorCento implements RegraDeCalculo {
public double calcula(Funcionario funcionario) {

if(funcionario.getSalarioBase() > 3000.0) {
return funcionario.getSalarioBase() * 0.8;

}
else {
return funcionario.getSalarioBase() * 0.9;
}
}
}

A mesma coisa no QuinzeOuVinteECincoPorCento :

public class QuinzeOuVinteECincoPorCento implements RegraDeCalculo {
public double calcula(Funcionario funcionario) {
if(funcionario.getSalarioBase() > 2000.0) {
return funcionario.getSalarioBase() * 0.75;

}
else {

return funcionario.getSalarioBase() * 0.85;
}

Excelente. Veja s6. As duas classes que eu criei com as regras de negdcio sdo muito mais coesas. Essa aqui s6 tem a

regra de QuinzeOuvinteECincoPorCento , e essa aqui s tem a de DezOuvintePorCento . Otimo!

Veja s6 que essa classe - as duas, na verdade - néo sofrem o problema da classe antiga da CalculadorabeSalario ,
porque essa classe ndo vai crescer pra sempre. A Unica responsabilidade dela é cuidar dessa regra de

DezOuVintePorCento , e dessa outra, de QuinzeOuVinteECincoPorCento , e assim por diante.

Agora vou voltar aqui paraa CalculadoraDeSalario e vamos fazer a refatoracdo mais simples, que é dar um new aqui
naregra. DezOuVintePorCento(). calcula e passo o funcionario . A mesma coisa aqui no debaixo, return new

QuinzeOuVinteECincoPorCento().calcula(funcionario); :

public class CalculadoraDeSalario {

https://cursos.alura.com.br/course/orientacao-a-objetos-avancada-e-principios-solid/task/4942 4/8

25/04/2020 SOLID com Java: Aula 1 - Atividade 2 Coeséo e o Single Responsibility Principle | Alura - Cursos online de tecnologia

public double calcula(Funcionario funcionario) {
if (DESENVOLVEDOR.equals(funcionario.getCargo())) {
return new DezOuVintePorCento(). calcula(funcionario);

if(DBA.equals(funcionario.getCargo()) || TESTER.equals(funcionario.getCargo())) {
return new QuinzeOuVinteECincoPorCento().calcula(funcionario);

throw new RuntimeException("funcionario invalido");

Otimo, j4 estd melhor, certo? Esse nosso c6digo ja estd bem melhor. Todas as classes sdo mais ou menos coesas, mais ou
menos por que essas duas estdo bem coesas, mas a CalculadoraDeSalario estd meio estranha ainda. Essa aqui ainda

ndo para de crescer, certo, sempre que um cargo novo aparecer, eu vou ter que lembrar de colocar um if a mais aqui.

Vamos resolver isso aqui. Como que eu vou fazer? Facil. Todo cargo tem uma regra de negdcio associada, certo? Entdo é
isso que eu vou fazer aqui. Quando eu criar um cargo, eu vou passar pra ele o tipo de regra de negocio que ele vai usar.
DESENVOLVEDOR (new DezOuVintePorCento()), , 0 DBA(new QuinzeOuVinteECincoPorCento()), , € arnesrna.coisa.para()nneu

TESTER(new QuinzeOuVinteECincoPorCento()); :

public enum Cargo {
DESENVOLVEDOR(new DezOuVintePorCento()),
DBA(new DezOuVintePorCento()),
TESTER(new QuinzeOuVinteECincoPorCento());

Esta certo? As pessoas esquecem - esse é um detalhe do Java - que o enum é quase uma classe, eu posso ter cddigo nele.

O que eu vou fazer aqui, vou criar o construtor do Cargo , que vai receber uma RegraDeCalculo , que vou chamar de

regra , vou guardar essa regra num atributo do enum, e vou criar aqui 0 getRegra :

private RegraDeCalculo regra;

Cargo(RegrabDeCalculo regra) {
this.regra = regra;

}
public RegraDeCalculo getRegra() {

return regra;

Por que que eu fiz isso? Porque, veja sd, com o enum desse jeito, se eu criar um cargo novo, igual, por exemplo
SECRETARIO , se eu fizer isso aqui, o codigo ndo compila. Ele vai, obrigatoriamente, me pedir o qué? Uma regra de

céalculo. Esta certo?

Entfo, vamos 14. Nosso cddigo estd funcionando e eu vou voltar aqui para a CalculadorabDeSalario . Aqui, veja s como
ficou mais fécil, dé pra jogar tudo isso aqui fora e fazer simplesmente return

funcionario.getCargo().getRegra().calcula(funcionario); :

https://cursos.alura.com.br/course/orientacao-a-objetos-avancada-e-principios-solid/task/4942 5/8

25/04/2020 SOLID com Java: Aula 1 - Atividade 2 Coeséo e o Single Responsibility Principle | Alura - Cursos online de tecnologia

public double calcula(Funcionario funcionario) {
return funcionario.getCargo().getRegra().calcula(funcionario);"

Eu poderia até, na verdade, esconder isso aqui dentro do préprio funcionario , alguma coisa como:

public double calcula(Funcionario funcionario) {
return funcionario.calculaSalario();

E esse método 14 dentro vai fazer simplesmente:

public double calculaSalario() {
return cargo.getRegra().calcula(this);

Calcula para ele mesmo (this). Tudo isso aqui continua funcionando. Apaguei os imports ali em cima e o cddigo ficou

menor.

Nessa minha implementacdo, talvez essa classe CalculadoraDeSalario passe até a ser inttil, porque agora ela s6 tem
uma unica linha de c6digo, calculasalario() . O meu grande segredo aqui foi as classes DezOuvintePorCento ,

QuinzeOuVinteECincoPorCento .

Da uma olhada também na classe Funcionario . A minha classe Funcionario é bem simples, ela tem um monte de
atributos, um deles é 0 cargo , e aqui 0 calculaSalario . Essa classe é coesa, até porque ndo tem muito por que ela ndo

ser, certo? Ela s6 tem regras de Funcionario . Ndo tem problema.

O problema de coesdo que eu dei pra vocés nesse exercicio foi justamente naquela CalculadorabDesalario que fazia

muita coisa, e a solugdo foi espalhar as regras em classes diferentes, e fazer o Cargo ser mais inteligente. Certo?
Ja vou explicar também a vantagem dessa refatoracéo aqui do Cargo , que ndo envolve sé coesdo. Ja chego 1a.

Otimo, nosso cédigo ficou muito melhor. Mas agora eu quero dar uma olhada no cédigo antigo de novo, porque na
nossa refatoracgéo, nds resolvemos dois problemas, na verdade, que essa classe tinha. Um deles era de coesdo, que eu
discuti com vocés, mas o segundo eu passei batido, porque eu ndo queria entrar em detalhe agora. Mas olha s6, um
outro grande problema de cddigos orientados a objeto é a quantidade de pontos que eu tenho que mudar, dada uma

alteragdo do meu usudrio.

Veja sé. Nesse codigo antigo, da maneira com que estava programado antes, se eu criasse um cargo novo, por exemplo,
o cargo de SECRETARIO, 0 que eu ia ter que fazer? Eu ia ter que mexer no meu enum, certo? Ia ter que adicionar uma
linha a mais ali no meu enum, sé que, mais do que isso, eu ia ter que abrir essa classe CalculadorabDeSalario e colocar a

regra dele ai.

Agora, a pergunta é: e se eu esquecesse? O ponto é as vezes nem esquecet, o ponto é que as vezes eu sou um
desenvolvedor que cai de paraquedas no projeto e ndo conheco tudo. E como essa mudanga é indireta, ndo é clara no
meu c6digo - toda vez que um cargo novo aparece eu tenho que mexer na CalculadorabDeSalario eu n#o vou lembra.

Esse é um grande problema de cédigo OO. E a propagacio de mudanca.

Eu tenho que mexer num unico ponto, idealmente. O cliente pediu uma mudanca, eu vou num tnico lugar, e nesse

lugar eu mexo, e a mudanca propaga pro resto. Eu ndo tenho que programar usando ctrl + F . Esse é um 6timo indicio

https://cursos.alura.com.br/course/orientacao-a-objetos-avancada-e-principios-solid/task/4942 6/8

25/04/2020 SOLID com Java: Aula 1 - Atividade 2 Coeséo e o Single Responsibility Principle | Alura - Cursos online de tecnologia

de que seu c6digo ndo estd bem orientado a objetos: é quando vocé tem que, o tempo inteiro, apelar para ctrl + F , ou

pra grep no Linux, alguma forma pra sair buscando cédigo pra descobrir onde tem que mudar.

Idealmente, esses pontos de mudanca, eles sdo sempre explicitos no seu design. No nosso c6digo novo, nés resolvemos

esse problema. No préprio enum agora eu tenho 14, eu passo pra ele a regra de calculo que eu vou usar.

Esse tipo de codigo, galera, a gente fala que é um problema de encapsulamento. Porque o enum ali, Cargo , deixou
vazar pro mundo de fora aonde vai ficar essa regra de calculo, ndo estava escondida nele. O cargo sabe a regra que tem

que escolher. Entdo esse cddigo tem que estar dentro dele.

Esta certo? Antes, o nosso cddigo, além de nio ser coeso, ele ndo estava encapsulado. Mais pra frente, tem um capitulo
em que eu s6 vou falar de encapsulamento. Mas ja queria alertar pra vocés desde o comeco o que é encapsulamento, e

olha s6 como isso é perigoso. T4 bem?

De novo, encapsulamento aqui estava problematico, a regra de célculo estava saindo da classe Cargo , do enum Cargo .
Eu tinha que mexer em outro lugar para colocar a regra que € relativa ao cargo. E agora eu resolvi, certo, sempre que eu
criar um enum novo, o compilador vai me encher o saco e vai pedir pra eu passar ali a regra de cdlculo. Ndo tem como

eu criar um cargo sem passar a regra de calculo.

“Ah, mas estou criando um cargo que n#o tem regra”, 6timo. Vocé vai criar a regra e vai colocar no enum. Tudo

ligadinho no meu sistema, eu ndo vou ter o problema de esquecer de passar uma regra pra um cargo.

Veja que esse problema, pessoal, no mundo real pode ser pior. Porque eu posso ter 10 classes diferentes que tenham
uma regra de negécio relacionada ao cargo. Aqui eu fiz a brincadeira com o salario, mas eu poderia ter 3, 4, 5 outras

regras espalhadas em 4, 5 outras classes diferentes. T4 bem?

Voltando aqui para o meu slide, classes coesas, eu as quero o tempo inteiro. Por qué? Porque uma classe coesa é mais
facil de ser lida, eu tenho mais reuso, eu posso pega-la e levar para um outro sistema, ela provavelmente vai ser mais
simples, porque ela vai ter menos cddigo, e eu ndo vou precisar abri-la o tempo inteiro. Essa é uma coisa com a qual me
preocupo bastante, uma classe coesa, ela geralmente vem fechada no meu Eclipse. Porque eu s6 a abro no caso
particular quando eu preciso mudar aquela regra ou quando eu encontrei um problema naquela regra. Mas eu nao fico

mexendo nela o tempo inteiro.

Essa é a vantagem de uma classe coesa, ela é pequenininha, bem focada, eu sei quando eu tenho que mexer nela, e eu

ndo tenho que mexer nela o tempo inteiro.

No meu slide, eu coloquei a sigla SRP. No comeco do curso, eu falei que esse era um curso de Orientaco a objetos
avancada e SOLID. O que é SOLID? SOLID é o acrénimo, € o conjunto de 5 boas praticas em relagdo a Orientacéo a

objetos, cada letra fala de uma pratica em particular.

0 S$** nos remete ao **SRP, o Single Responsibility Principle ? em portugués, Principio da Responsabilidade Unica. A
tradugdo disso, de maneira simples, é coesdo. Tenha classes coesas. E aqui, eu discuti com vocés uma maneira de eu

conseguir isso, e mais, eu discuti uma maneira de observar que as classes ndo sao coesas.

Comece a prestar atenco nisso no seu dia a dia, quando vocé estd escrevendo uma classe que no para de crescer
nunca, esse é um indicio de que ela no é coesa. Quando vocé tem uma classe com 40, 50, 60 métodos, pare e pense
“Serd que a minha classe, ela tem que ter mesmo 60 comportamentos diferentes? Sera que eu ndo consigo separar isso

em classes menores, mais coesas? Entdo é isso: nesta aula, a licdo é coesdo. Obrigado.

https://cursos.alura.com.br/course/orientacao-a-objetos-avancada-e-principios-solid/task/4942 718

25/04/2020 SOLID com Java: Aula 1 - Atividade 2 Coeséo e o Single Responsibility Principle | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/orientacao-a-objetos-avancada-e-principios-solid/task/4942 8/8

