
25/04/2020 SOLID com Java: Aula 1 - Atividade 2 Coesão e o Single Responsibility Principle | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/orientacao-a-objetos-avancada-e-principios-solid/task/4942 1/8

 02
Coesão e o Single Responsibility Principle

Olá! Bem-vindo ao curso de Orientação a objetos avançado e SOLID do Alura. Neste curso eu vou discutir com vocês

todas aquelas ideias de Orientação a objetos, como coesão, acoplamento, encapsulamento etc., só que dessa vez com

um ponto de vista um pouquinho mais avançado, um pouquinho mais profundo nesses assuntos.

Vou discutir com vocês como conseguir fazer classes que são bastante coesas, que são pouco acopladas, como evitar

fazer classes e métodos que não estão bem encapsulados etc. e tal. Pra esse curso, eu espero que você conheça um

pouquinho de Orientação a objetos, já tenha alguma prática com alguma linguagem que dá suporte. Aqui no curso, vou

usar Java, mas tudo o que eu discutir vai funcionar para todas as linguagens que são OO. Tá legal?

A primeira aula vai ser sobre coesão. Todo mundo já ouviu falar de coesão, certo? E tem aquela máxima lá, “Olha, todas

as suas classes, elas têm que ser sempre muito coesas.” Agora a pergunta é: como fazer isso? Como criar classes que são

coesas o tempo inteiro? Como evitar criar classes que tenham baixa coesão?

E para discutir isso, eu vou mostrar um código que parece código do mundo real. Dá uma olhada. Eu tenho aqui a

minha classe CalculadoraDeSalario . Essa classe, dá para ver pelo método calcula , tem por objetivo calcular o salário

de um funcionário. Dado um funcionário, e um cargo que esse funcionário tem, eu tenho uma regra diferente do

cálculo do salário dele. Dá uma olhada:

public class CalculadoraDeSalario {

 public double calcula(Funcionario funcionario) {
 if(DESENVOLVEDOR.equals(funcionario.getCargo())) {
 return dezOuVintePorcento(funcionario);
 }

 if(DBA.equals(funcionario.getCargo()) || TESTER.equals(funcionario.getCargo())) {
 return quinzeOuVinteCincoPorcento(funcionario);
 }

 throw new RuntimeException("funcionario invalido");
 }

 private double dezOuVintePorcento(Funcionario funcionario) {
 if(funcionario.getSalarioBase() > 3000.0) {
 return funcionario.getSalarioBase() * 0.8;
 }
 else {
 return funcionario.getSalarioBase() * 0.9;
 }
 }

 private double quinzeOuVinteCincoPorcento(Funcionario funcionario) {
 if(funcionario.getSalarioBase() > 2000.0) {
 return funcionario.getSalarioBase() * 0.75;
 }
 else {
 return funcionario.getSalarioBase() * 0.85;

25/04/2020 SOLID com Java: Aula 1 - Atividade 2 Coesão e o Single Responsibility Principle | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/orientacao-a-objetos-avancada-e-principios-solid/task/4942 2/8

 }
 }

}

Se o cara for desenvolvedor, ele cai nesse método aí 10% ou 20%. Esse método lá dentro veri�ca se o salário dele é maior

do que tanto, e aí ele dá um desconto. Caso contrário (else), ele dá um outro desconto. A mesma coisa acontece para

DBA e TESTER . Veja que ambos compartilham a mesma regra, essa regra de 15% ou 25%. E ali, a implementação é mais

ou menos a mesma.

Essa é uma classe que parece bastante com código do mundo real. Certo? Onde eu tenho classes que olham o estado de

um objeto e, a partir daí, decidem qual algoritmo executar, e fazem isso por meio de if s e for s e while s etc. e tal.

Agora a pergunta é: qual é o problema desse código? Será que ele é um código coeso? Será que ele está muito acoplado?

Vamos lá.

Voltando aqui para ele. Esse código, ele não é lá muito coeso, está certo? Como que eu sei disso? A minha primeira dica

é o seguinte, eu sempre paro e penso: “Puxa, será que essa classe vai parar de crescer? Porque veja só: se a classe é

coesa, ou seja, ela tem uma única responsabilidade, ela cuida de apenas uma única parte do meu sistema, ela

representa uma única entidade. Se essa classe é coesa, ela tem que parar de crescer um dia. Porque as

responsabilidades de uma entidade um dia param de aparecer.

Nesse caso, em particular, não. Veja só. Sempre que eu criar um cargo novo no meu sistema, eu vou ter que alterar essa

classe. Sempre, sempre, sempre. Agora imagina no mundo real, muito mais complexo do que esse código, onde eu

tenho, sei lá, 30, 40, 50 cargos. E imagina que eu tenha 30 regras diferentes. O que vai acontecer com essa classe? Essa

classe vai �car gigante, ela vai ter 30 regras diferentes. Tá certo? Então, ela não vai ser nada coesa.

Qual é a consequência disso? Um código complicado. Todo mundo sabe a consequência de um código complicado,

certo? É mais difícil de manter, é muito mais suscetível a um bug, porque o código é enorme, você vai deixar passar

alguma coisa ali, o reuso é muito menor, porque se a classe faz muita coisa é difícil levá-la pra um outro sistema. Porque

o outro sistema raramente vai precisar de tudo o que ela faz. E assim por diante.

Veja só, pessoal, que complexidade, um código complicado, ele é bastante discutível no mundo OO. Porque às vezes eu

posso ter um código complicado, mas dentro de uma classe coesa. E esse tipo de código me incomoda menos. Porque se

eu tenho um método público, cujo código está feio, é fácil: eu jogo a implementação dele fora e escrevo de novo. Tem

um monte de técnica de refatoração pra isso. Escrever variáveis com bons nomes, criar métodos privados, extrair para

variáveis locais que explicam melhor o que o algoritmo está fazendo etc. e tal. Eu nem vou entrar nesse mérito de

refatoração, porque é uma outra discussão e você pode até fazer o nosso curso sobre o assunto (o curso de refatoração).

Mas aqui, o que me incomoda é que essa classe, além de complicada, ela não é coesa. Ela vai crescer pra sempre. Então,

ela vai di�cultar e muito a vida do desenvolvedor.

Veja o sistema hoje. Eu tenho uma CalculadoraDeSalario , que tem as várias regras de cálculo. E toda vez que surgir

uma regra nova, eu vou ter que en�á-la aí dentro. Esse tipo de código, galera, ainda di�culta a testabilidade. Se eu estou

pensando em teste automatizado, o teste dessa classe vai ser muito complicado. Eu vou ter que escrever uma bateria

imensa pra ela. Difícil, certo? Qual é a ideia?

O que eu estou tentando fazer agora é pegar cada uma das regras que eu tinha de cálculo ? DezOuVintePorCento ,

QuinzeOuVintePorCento , TrintaOuQuarentaPorCento , sei lá, as regras que forem aparecendo -, e colocar cada uma dessas

regras num único lugar.

25/04/2020 SOLID com Java: Aula 1 - Atividade 2 Coesão e o Single Responsibility Principle | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/orientacao-a-objetos-avancada-e-principios-solid/task/4942 3/8

Veja só o que ia acontecer na prática. Vou voltar aqui pro meu código. Eu tenho os dois métodos privados, e imagina que

cada um desses métodos privados eu vá levar para uma classe em particular. Eu vou extrair um método privado e

colocar numa classe. O que eu vou ganhar? Veja só que cada uma dessas regras, cada uma dessas classes, será coesa.

Porque eu vou ter uma classe cuja única responsabilidade é entender da regra de DezOuVintePorCento , a outra, de

QuinzeOuVinteCincoPorCento .

Ou seja, cada classe vai entender de uma única regra. Se a regra mudar, tudo bem, eu vou lá e mexo na classe. Mas veja

só que ela vai mudar por um único motivo. O motivo é se essa regra em particular mudar. Se uma regra nova aparecer,

eu não vou nem precisar abrir a classe DezOuQuinzePorCento ou QuinzeOuVinteCincoPorCento , não vou. Vou

simplesmente criar uma nova classe.

Aqui estou criando classes coesas. E como eu optei por tratar a coesão nesse código? Eu, com a minha experiência,

percebi que o que muda de um pro outro é basicamente a regra que é aplicada em cada um dos casos. Tá certo?

Eu peguei a regra e coloquei em classes menores. Essas classes serão mais coesas. Excelente. Eu vou mostrar isso em

código agora pra vocês, fazendo essa refatoração, pra vocês verem como isso vai �car muito mais legal.

Agora no Eclipse, vamos lá. A primeira coisa que eu vou fazer é pegar cada um desses métodos privados e extrair pra

uma classe. Então veja, vou criar a classe que eu vou chamar de DezOuVintePorCento .

E vou pegar esse método privado aqui:

private double dezOuVintePorcento(Funcionario funcionario) {
 if(funcionario.getSalarioBase() > 3000.0) {
 return funcionario.getSalarioBase() * 0.8;
 }
 else {
 return funcionario.getSalarioBase() * 0.9;
 }
 }

E vou jogar pra lá. Por enquanto deixa assim, está meio estranho mas tudo bem. Vou fazer a mesma coisa com o

QuinzeOuVinteECincoPorCento . Nova classe:

 private double quinzeOuVinteCincoPorcento(Funcionario funcionario) {
 if(funcionario.getSalarioBase() > 2000.0) {
 return funcionario.getSalarioBase() * 0.75;
 }
 else {
 return funcionario.getSalarioBase() * 0.85;
 }
 }

}

Legal. A primeira coisa que eu já percebi. É que veja só que tem duas coisas em comum entre essas duas classes que eu

acabei de criar, certo? Ambas devolvem um double e recebem um Funcionario , e ambas são uma regra de cálculo. No

mundo orientado a objetos, a gente vai criar interfaces, certo? É sempre legal programar pra interfaces.

25/04/2020 SOLID com Java: Aula 1 - Atividade 2 Coesão e o Single Responsibility Principle | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/orientacao-a-objetos-avancada-e-principios-solid/task/4942 4/8

No próximo capítulo sobre acoplamento, eu vou discutir a importância de interfaces. Elas são estáveis, etc. e tal. Mas eu

chego lá.

Aqui por enquanto eu vou só criar a interface, então uma RegraDeCalculo , método public double calcula que vai

receber um funcionário aqui, que eu vou colocar funcionario :

public double calcula(Funcionario funcionario);

Agora eu vou nessas duas regras de negócio que eu tenho, e vou implementar, implements RegraDeCalculo . Vou mudar o

método aqui para calcula , o método �ca public , certo? Legal.

public class DezOuVintePorCento implements RegraDeCalculo {

 public double calcula(Funcionario funcionário) {
 if(funcionario.getSalarioBase() > 3000.0) {
 return funcionario.getSalarioBase() * 0.8;
 }
 else {
 return funcionario.getSalarioBase() * 0.9;
 }
 }
}

A mesma coisa no QuinzeOuVinteECincoPorCento :

public class QuinzeOuVinteECincoPorCento implements RegraDeCalculo {
 public double calcula(Funcionario funcionario) {
 if(funcionario.getSalarioBase() > 2000.0) {
 return funcionario.getSalarioBase() * 0.75;
 }
 else {
 return funcionario.getSalarioBase() * 0.85;
 }
 }

}

Excelente. Veja só. As duas classes que eu criei com as regras de negócio são muito mais coesas. Essa aqui só tem a

regra de QuinzeOuVinteECincoPorCento , e essa aqui só tem a de DezOuVintePorCento . Ótimo!

Veja só que essa classe – as duas, na verdade – não sofrem o problema da classe antiga da CalculadoraDeSalario ,

porque essa classe não vai crescer pra sempre. A única responsabilidade dela é cuidar dessa regra de

DezOuVintePorCento , e dessa outra, de QuinzeOuVinteECincoPorCento , e assim por diante.

Agora vou voltar aqui para a CalculadoraDeSalario e vamos fazer a refatoração mais simples, que é dar um new aqui

na regra. DezOuVintePorCento(). calcula e passo o funcionario . A mesma coisa aqui no debaixo, return new

QuinzeOuVinteECincoPorCento().calcula(funcionario); :

public class CalculadoraDeSalario {

25/04/2020 SOLID com Java: Aula 1 - Atividade 2 Coesão e o Single Responsibility Principle | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/orientacao-a-objetos-avancada-e-principios-solid/task/4942 5/8

 public double calcula(Funcionario funcionario) {
 if(DESENVOLVEDOR.equals(funcionario.getCargo())) {
 return new DezOuVintePorCento(). calcula(funcionario);
 }

 if(DBA.equals(funcionario.getCargo()) || TESTER.equals(funcionario.getCargo())) {
 return new QuinzeOuVinteECincoPorCento().calcula(funcionario);
 }

 throw new RuntimeException("funcionario invalido");
 }

Ótimo, já está melhor, certo? Esse nosso código já está bem melhor. Todas as classes são mais ou menos coesas, mais ou

menos por que essas duas estão bem coesas, mas a CalculadoraDeSalario está meio estranha ainda. Essa aqui ainda

não para de crescer, certo, sempre que um cargo novo aparecer, eu vou ter que lembrar de colocar um if a mais aqui.

Vamos resolver isso aqui. Como que eu vou fazer? Fácil. Todo cargo tem uma regra de negócio associada, certo? Então é

isso que eu vou fazer aqui. Quando eu criar um cargo, eu vou passar pra ele o tipo de regra de negócio que ele vai usar.

DESENVOLVEDOR(new DezOuVintePorCento()), , o DBA(new QuinzeOuVinteECincoPorCento()), , e a mesma coisa para o meu

TESTER(new QuinzeOuVinteECincoPorCento()); :

public enum Cargo {
 DESENVOLVEDOR(new DezOuVintePorCento()),
 DBA(new DezOuVintePorCento()),
 TESTER(new QuinzeOuVinteECincoPorCento());
}

Está certo? As pessoas esquecem – esse é um detalhe do Java – que o enum é quase uma classe, eu posso ter código nele.

O que eu vou fazer aqui, vou criar o construtor do Cargo , que vai receber uma RegraDeCalculo , que vou chamar de

regra , vou guardar essa regra num atributo do enum, e vou criar aqui o getRegra :

private RegraDeCalculo regra;

Cargo(RegraDeCalculo regra) {
 this.regra = regra;
}
public RegraDeCalculo getRegra() {
 return regra;
}

Por que que eu �z isso? Porque, veja só, com o enum desse jeito, se eu criar um cargo novo, igual, por exemplo

SECRETARIO , se eu �zer isso aqui, o código não compila. Ele vai, obrigatoriamente, me pedir o quê? Uma regra de

cálculo. Está certo?

Então, vamos lá. Nosso código está funcionando e eu vou voltar aqui para a CalculadoraDeSalario . Aqui, veja só como

�cou mais fácil, dá pra jogar tudo isso aqui fora e fazer simplesmente return

funcionario.getCargo().getRegra().calcula(funcionario); :

25/04/2020 SOLID com Java: Aula 1 - Atividade 2 Coesão e o Single Responsibility Principle | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/orientacao-a-objetos-avancada-e-principios-solid/task/4942 6/8

public double calcula(Funcionario funcionario) {
 return funcionario.getCargo().getRegra().calcula(funcionario);`

Eu poderia até, na verdade, esconder isso aqui dentro do próprio funcionario , alguma coisa como:

public double calcula(Funcionario funcionario) {
 return funcionario.calculaSalario();
}

E esse método lá dentro vai fazer simplesmente:

public double calculaSalario() {
 return cargo.getRegra().calcula(this);
}

Calcula para ele mesmo (this). Tudo isso aqui continua funcionando. Apaguei os imports ali em cima e o código �cou

menor.

Nessa minha implementação, talvez essa classe CalculadoraDeSalario passe até a ser inútil, porque agora ela só tem

uma única linha de código, calculaSalario() . O meu grande segredo aqui foi as classes DezOuVintePorCento ,

QuinzeOuVinteECincoPorCento .

Dá uma olhada também na classe Funcionario . A minha classe Funcionario é bem simples, ela tem um monte de

atributos, um deles é o cargo , e aqui o calculaSalario . Essa classe é coesa, até porque não tem muito por que ela não

ser, certo? Ela só tem regras de Funcionario . Não tem problema.

O problema de coesão que eu dei pra vocês nesse exercício foi justamente naquela CalculadoraDeSalario que fazia

muita coisa, e a solução foi espalhar as regras em classes diferentes, e fazer o Cargo ser mais inteligente. Certo?

Já vou explicar também a vantagem dessa refatoração aqui do Cargo , que não envolve só coesão. Já chego lá.

Ótimo, nosso código �cou muito melhor. Mas agora eu quero dar uma olhada no código antigo de novo, porque na

nossa refatoração, nós resolvemos dois problemas, na verdade, que essa classe tinha. Um deles era de coesão, que eu

discuti com vocês, mas o segundo eu passei batido, porque eu não queria entrar em detalhe agora. Mas olha só, um

outro grande problema de códigos orientados a objeto é a quantidade de pontos que eu tenho que mudar, dada uma

alteração do meu usuário.

Veja só. Nesse código antigo, da maneira com que estava programado antes, se eu criasse um cargo novo, por exemplo,

o cargo de SECRETARIO , o que eu ia ter que fazer? Eu ia ter que mexer no meu enum, certo? Ia ter que adicionar uma

linha a mais ali no meu enum, só que, mais do que isso, eu ia ter que abrir essa classe CalculadoraDeSalario e colocar a

regra dele aí.

Agora, a pergunta é: e se eu esquecesse? O ponto é às vezes nem esquecer, o ponto é que às vezes eu sou um

desenvolvedor que caí de paraquedas no projeto e não conheço tudo. E como essa mudança é indireta, não é clara no

meu código – toda vez que um cargo novo aparece eu tenho que mexer na CalculadoraDeSalario eu não vou lembra.

Esse é um grande problema de código OO. É a propagação de mudança.

Eu tenho que mexer num único ponto, idealmente. O cliente pediu uma mudança, eu vou num único lugar, e nesse

lugar eu mexo, e a mudança propaga pro resto. Eu não tenho que programar usando Ctrl + F . Esse é um ótimo indício

25/04/2020 SOLID com Java: Aula 1 - Atividade 2 Coesão e o Single Responsibility Principle | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/orientacao-a-objetos-avancada-e-principios-solid/task/4942 7/8

de que seu código não está bem orientado a objetos: é quando você tem que, o tempo inteiro, apelar para Ctrl + F , ou

pra grep no Linux, alguma forma pra sair buscando código pra descobrir onde tem que mudar.

Idealmente, esses pontos de mudança, eles são sempre explícitos no seu design. No nosso código novo, nós resolvemos

esse problema. No próprio enum agora eu tenho lá, eu passo pra ele a regra de cálculo que eu vou usar.

Esse tipo de código, galera, a gente fala que é um problema de encapsulamento. Porque o enum ali, Cargo , deixou

vazar pro mundo de fora aonde vai �car essa regra de cálculo, não estava escondida nele. O Cargo sabe a regra que tem

que escolher. Então esse código tem que estar dentro dele.

Está certo? Antes, o nosso código, além de não ser coeso, ele não estava encapsulado. Mais pra frente, tem um capítulo

em que eu só vou falar de encapsulamento. Mas já queria alertar pra vocês desde o começo o que é encapsulamento, e

olha só como isso é perigoso. Tá bem?

De novo, encapsulamento aqui estava problemático, a regra de cálculo estava saindo da classe Cargo , do enum Cargo .

Eu tinha que mexer em outro lugar para colocar a regra que é relativa ao cargo. E agora eu resolvi, certo, sempre que eu

criar um enum novo, o compilador vai me encher o saco e vai pedir pra eu passar ali a regra de cálculo. Não tem como

eu criar um cargo sem passar a regra de cálculo.

“Ah, mas estou criando um cargo que não tem regra”, ótimo. Você vai criar a regra e vai colocar no enum. Tudo

ligadinho no meu sistema, eu não vou ter o problema de esquecer de passar uma regra pra um cargo.

Veja que esse problema, pessoal, no mundo real pode ser pior. Porque eu posso ter 10 classes diferentes que tenham

uma regra de negócio relacionada ao cargo. Aqui eu �z a brincadeira com o salário, mas eu poderia ter 3, 4, 5 outras

regras espalhadas em 4, 5 outras classes diferentes. Tá bem?

Voltando aqui para o meu slide, classes coesas, eu as quero o tempo inteiro. Por quê? Porque uma classe coesa é mais

fácil de ser lida, eu tenho mais reuso, eu posso pegá-la e levar para um outro sistema, ela provavelmente vai ser mais

simples, porque ela vai ter menos código, e eu não vou precisar abri-la o tempo inteiro. Essa é uma coisa com a qual me

preocupo bastante, uma classe coesa, ela geralmente vem fechada no meu Eclipse. Porque eu só a abro no caso

particular quando eu preciso mudar aquela regra ou quando eu encontrei um problema naquela regra. Mas eu não �co

mexendo nela o tempo inteiro.

Essa é a vantagem de uma classe coesa, ela é pequenininha, bem focada, eu sei quando eu tenho que mexer nela, e eu

não tenho que mexer nela o tempo inteiro.

No meu slide, eu coloquei a sigla SRP. No começo do curso, eu falei que esse era um curso de Orientação a objetos

avançada e SOLID. O que é SOLID? SOLID é o acrônimo, é o conjunto de 5 boas práticas em relação a Orientação a

objetos, cada letra fala de uma prática em particular.

O S** nos remete ao **SRP, o Single Responsibility Principle ? em português, Princípio da Responsabilidade Única. A

tradução disso, de maneira simples, é coesão. Tenha classes coesas. E aqui, eu discuti com vocês uma maneira de eu

conseguir isso, e mais, eu discuti uma maneira de observar que as classes não são coesas.

Comece a prestar atenção nisso no seu dia a dia, quando você está escrevendo uma classe que não para de crescer

nunca, esse é um indício de que ela não é coesa. Quando você tem uma classe com 40, 50, 60 métodos, pare e pense

“Será que a minha classe, ela tem que ter mesmo 60 comportamentos diferentes? Será que eu não consigo separar isso

em classes menores, mais coesas? Então é isso: nesta aula, a lição é coesão. Obrigado.

25/04/2020 SOLID com Java: Aula 1 - Atividade 2 Coesão e o Single Responsibility Principle | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/orientacao-a-objetos-avancada-e-principios-solid/task/4942 8/8

