
1

Profissão: Engenheiro
Front-End

BOAS
PRÁTICAS

3

Confira boas práticas da
comunidade de Front-End por
assunto relacionado às aulas.

Conheça o Babel

Recursos do ES6+

Métodos de arrays

Conheça a arrow function

Operadores de Spread e Rest

Conheça as estruturas Map e Set

Programação Assíncrona

Orientações a Objetos com ES6

4

Babel

O Babel também oferece suporte a plugins e presets
que permitem personalizar e estender suas
funcionalidades. Os plugins permitem adicionar
recursos e transformações específicas ao código,
enquanto os presets são conjuntos pré-configurados de
plugins que podem ser usados para transpilar para
uma determinada versão do ECMAScript.

Conheça o
Babel

5

Preset
O Babel oferece vários presets prontos para uso, como:

● @babel/preset-env: Este é o preset mais comumente
usado. Ele permite que você especifique um conjunto de
ambientes de destino (como navegadores específicos ou
versões do Node.js) e, em seguida, o Babel escolhe os
plugins necessários com base nesses ambientes de
destino. Isso permite que você escreva código moderno
do ECMAScript e o transpile para uma versão compatível
com os ambientes especificados.

● @babel/preset-react: Este preset é projetado para
transpilar código JSX usado no desenvolvimento de
aplicativos React. Ele inclui os plugins necessários para
transformar o JSX em JavaScript válido.

● @babel/preset-typescript: Este preset é usado para
transpilar código TypeScript para JavaScript. Ele inclui os
plugins necessários para lidar com as diferenças de
sintaxe entre TypeScript e JavaScript.

Conheça o
Babel

6

Considere a utilização de métodos encadeados: Os métodos de
arrays podem ser encadeados para realizar várias
transformações em um único fluxo de código. Isso pode ajudar a
melhorar a legibilidade e a manutenibilidade do seu código.

Esteja ciente do impacto no desempenho: Embora os métodos
de arrays sejam úteis e expressivos, é importante ter em mente
que eles podem ter um impacto no desempenho, especialmente
ao lidar com arrays muito grandes. Em alguns casos, loops
tradicionais podem ser mais eficientes. Avalie o contexto e o
tamanho do array em questão para tomar a decisão adequada.

Mantenha-se atualizado com as novidades do ECMAScript: O
JavaScript está em constante evolução, com novas versões do
ECMAScript trazendo recursos e melhorias. Fique atualizado com
as novidades do ECMAScript para aproveitar as funcionalidades
mais recentes e utilizar o Babel para transpilá-las em ambientes
que ainda não oferecem suporte nativo.

Métodos de
arrays

Acompanhe algumas dicas para
usar os métodos arrays:

7

Verifique a compatibilidade com o ambiente de destino: Antes
de usar arrow functions, verifique se o ambiente de destino do
seu código é compatível com as versões do ECMAScript (ES)
que as suportam. Arrow functions foram introduzidas no ES6
(ES2015) e são amplamente suportadas em navegadores e
ambientes modernos. No entanto, se você estiver transpilando
seu código para versões mais antigas do ECMAScript, como o
ES5, o Babel garantirá que as arrow functions sejam
transpiladas para uma sintaxe equivalente suportada pelos
ambientes de destino.

Use arrow functions quando adequado: As arrow functions
podem ser úteis quando você deseja uma sintaxe mais concisa
para funções, especialmente em casos de funções curtas e
expressivas. No entanto, lembre-se de que elas não são
adequadas para todos os cenários. Em particular, as arrow
functions não possuem seus próprios valores de this e não são
adequadas para serem usadas como métodos de objeto.
Nestes casos, é preferível o uso de funções tradicionais.

Conheça a arrow
function

Arrow function

Acompanhe algumas dicas que
podem ser úteis ao usar a arrow
function:

8

Mantenha a legibilidade do código: Embora as arrow functions
possam tornar o código mais conciso, é importante manter a
legibilidade. Evite aninhar arrow functions excessivamente ou
escrever expressões muito longas em uma única linha. Separe
o corpo da função em várias linhas, se necessário, para
melhorar a clareza do código.

Teste o código transpilado: Certifique-se de testar o código
transpilado pelo Babel, especialmente em diferentes
navegadores e ambientes de destino. Isso ajudará a garantir
que as arrow functions e outras funcionalidades transpiladas
estejam funcionando corretamente em todos os ambientes
desejados.

Conheça a arrow
function

Arrow function

Acompanhe algumas dicas que
podem ser úteis ao usar a arrow
function:

9

Herança do contexto léxico: Diferentemente das funções
tradicionais, as arrow functions herdam o valor de this do
contexto léxico em que estão definidas. Isso significa que o
valor de this dentro de uma arrow function será o mesmo valor
de this fora dela.

Evite usar arrow functions como métodos de objeto: Devido à
herança do contexto léxico, as arrow functions não são
adequadas para serem usadas como métodos de objeto, onde
geralmente se espera que this se refira ao próprio objeto. Em
vez disso, use funções tradicionais para esses casos.

Conheça a arrow
function

This

Quando se trata do contexto this
em arrow functions, aqui estão
algumas dicas importantes a
serem consideradas:

10

Use arrow functions em callbacks: Arrow functions são
particularmente úteis em situações de callbacks, como em
métodos de array (map, filter, forEach) ou ao lidar com eventos
em bibliotecas ou frameworks. Nesses casos, o contexto do this
é frequentemente capturado corretamente pela arrow function,
evitando a necessidade de usar .bind() ou criar uma variável
para armazenar o contexto.

Se necessário, use .bind() ou crie uma variável para o
contexto: Em situações em que você precisa especificar
explicitamente um contexto diferente para a arrow function,
pode-se usar o método .bind() ou criar uma variável para
armazenar o contexto desejado.

Conheça a arrow
function

This

Quando se trata do contexto this
em arrow functions, aqui estão
algumas dicas importantes a
serem consideradas:

11

Arguments

Arguments não é um array real, mas possui algumas
características de um array, como a propriedade "length". No
entanto, ele não possui métodos de array como "forEach",
"map", entre outros. Se você precisar usar métodos de array,
pode convertê-lo em um array real usando técnicas como o
spread operator ou o método "Array.from()".

Embora a variável "arguments" seja útil em certos cenários, o
uso excessivo dela pode tornar o código menos legível e
dificultar a manutenção. Em muitos casos, é preferível usar
parâmetros de função explícitos para tornar o código mais
claro e previsível.

Operadores de
Spread e Rest

12

Coleta de argumentos variáveis: O operador rest é
especialmente útil quando você deseja criar funções que
aceitem um número variável de argumentos. Ele permite que
você colete todos os argumentos passados para a função em
um único parâmetro como um array. Isso é útil quando você
não sabe quantos argumentos serão fornecidos.

Acesso aos argumentos individuais: Com o operador rest, você
pode acessar cada argumento individualmente usando índices
ou métodos de array. Isso permite que você trabalhe com os
argumentos de maneira flexível e fácil.

Combinação com parâmetros regulares: O operador rest pode
ser combinado com parâmetros regulares em uma função. Os
parâmetros regulares são definidos antes do parâmetro rest e
podem ser usados normalmente.

Uso em desestruturação: O operador rest pode ser usado em
conjunto com a desestruturação de arrays ou objetos para
extrair valores específicos ou restantes.

Operadores de
Spread e Rest

Rest

Acompanhe algumas dicas para
usar o operador rest:

13

Criação de cópias de arrays e objetos: O operador spread é
ótimo para criar cópias superficiais (shallow copies) de arrays e
objetos, permitindo que você trabalhe com uma nova
referência sem modificar o original.

Combinação de arrays: O operador spread permite combinar
vários arrays em um único array.

Mesclagem de objetos: O operador spread também pode ser
usado para mesclar múltiplos objetos em um único objeto.

Passagem de argumentos para funções: O operador spread
pode ser usado para passar argumentos individuais para uma
função que espera múltiplos argumentos.

Criação de arrays ou objetos dinamicamente: O operador
spread permite adicionar elementos extras a um array ou
propriedades adicionais a um objeto de forma dinâmica.

Operadores de
Spread e Rest

Spread

Acompanhe algumas dicas para
usar o operador spread:

14

Atribuição de valores padrão: Ao desestruturar um objeto ou
array, você pode atribuir valores padrão a variáveis caso as
propriedades ou elementos não estejam presentes. Isso ajuda a
evitar erros quando os dados são incompletos ou ausentes.

Alias para propriedades: Você pode usar a desestruturação para
atribuir valores a variáveis com nomes diferentes dos das
propriedades originais, criando aliases (apelidos).

Desestruturação aninhada: Você pode desestruturar objetos ou
arrays aninhados, permitindo acessar propriedades ou
elementos internos com facilidade.

Ignorar valores: Você pode usar a sintaxe de vírgula para ignorar
valores que não são necessários na desestruturação. Isso é útil
quando você deseja extrair apenas alguns elementos de um
array ou propriedades específicas de um objeto.

Parâmetros de função: A desestruturação pode ser usada para
extrair valores de objetos diretamente nos parâmetros de uma
função, facilitando a passagem de valores.

Operadores de
Spread e Rest

Desestruturação

Acompanhe algumas dicas sobre o
uso dessa funcionalidade:

15

Criação de um Map: Para criar um novo Map vazio, você pode
usar a sintaxe new Map()

Adição de valores: Você pode adicionar valores ao Map usando
o método set(chave, valor)

Recuperação de valores: Para recuperar o valor associado a
uma chave específica, use o método get(chave)

Verificação de existência de uma chave: Para verificar se uma
chave existe no Map, use o método has(chave)

Remoção de um par chave-valor: Para remover um par
chave-valor do Map, use o método delete(chave).

Iteração sobre um Map: O Map oferece várias formas de iterar
sobre seus pares chave-valor, como os métodos forEach, keys,
values e entries.

Tamanho do Map: Você pode obter o número de pares
chave-valor em um Map usando a propriedade size.

Conheça as
estruturas Map e
Set

Map

Acompanhe algumas dicas para o
uso do conjunto map:

16

Criação de um Set: Para criar um novo Set vazio, você pode usar
a sintaxe new Set()

Adição de valores: Você pode adicionar valores ao Set usando o
método add(valor)

Verificação de existência de um valor: Para verificar se um valor
existe no Set, use o método has(valor)

Remoção de um valor: Para remover um valor do Set, use o
método delete(valor)

Iteração sobre um Set: O Set oferece várias formas de iterar
sobre seus valores, como o método forEach e o uso de for...of.

Tamanho do Set: Você pode obter o número de valores únicos
em um Set usando a propriedade size.

Conversão do Set em um Array: Se precisar converter um Set em
um Array, você pode usar o operador spread ... ou o método
Array.from().

Conheça as
estruturas Map e
Set

Set

Acompanhe algumas dicas para o
uso do conjunto set:

17

Utilize o async em torno da função: Ao definir uma função
assíncrona, coloque a palavra-chave async antes da declaração
da função. Isso indica que a função será assíncrona e retornará
uma Promise.

Use o await dentro da função assíncrona: O await é usado
dentro de uma função assíncrona para pausar a execução e
esperar a resolução de uma Promise. Certifique-se de usar o
await apenas dentro de funções assíncronas. Isso permite
escrever código assíncrono de forma síncrona, evitando
callbacks e mantendo a legibilidade do código.

Trate erros com try...catch: Ao usar async e await, é
recomendado envolver o código com um bloco try...catch. Isso
permite capturar erros lançados por Promises rejeitadas dentro
da função assíncrona. Utilize o bloco try para envolver o código
que contém o await e o bloco catch para tratar os erros
capturados.

Programação
Assíncrona

Async

Acompanhe algumas dicas para
usar a função async:

18

Lide com múltiplas Promises: Se você estiver trabalhando com
várias Promises dentro de uma função assíncrona, pode usar o
await em cada uma delas individualmente para aguardar a
resolução. Alternativamente, você pode usar Promise.all() para
aguardar a resolução de várias Promises ao mesmo tempo.

Evite o uso excessivo de async em cadeias de chamadas:
Embora o async possa ser útil em certos pontos do código, tenha
cuidado ao usá-lo em excesso em cadeias de chamadas de
funções. Isso pode levar a um desempenho inferior, pois cada
função assíncrona terá uma camada adicional de Promise
envolvendo a execução.

Programação
Assíncrona

Async

Acompanhe algumas dicas para
usar a função async:

19

Teste o código assíncrono: Ao escrever código assíncrono com
async e await, é importante testar cuidadosamente os cenários
assíncronos. Certifique-se de testar diferentes caminhos de
execução, como Promises resolvidas, rejeitadas e tempos limite
(timeout), para garantir que seu código esteja lidando
corretamente com essas situações.

Esteja atento à compatibilidade: Lembre-se de verificar a
compatibilidade do async e await com as versões do JavaScript
que você está utilizando.

Programação
Assíncrona

Async

Acompanhe algumas dicas para
usar a função async:

20

Encadeie Promises com then(): Aproveite o encadeamento de
métodos then() para executar ações sequenciais com base no
resultado de Promises anteriores. Isso permite criar um fluxo
lógico mais limpo e legível.

Utilize catch() para capturar erros: Utilize o método catch() para
capturar erros nas Promises encadeadas. Isso permite tratar
falhas e erros de forma centralizada e evitar que o código pare
de executar em caso de exceções.

Evite o "callback hell": As Promises foram introduzidas como uma
alternativa ao "callback hell" (aninhamento excessivo de
callbacks). Utilize Promises para lidar com operações assíncronas
em cascata de forma mais limpa e estruturada.

Programação
Assíncrona

Promise

Acompanhe algumas dicas para
usar Promises de forma eficaz:

21

Crie funções utilitárias reutilizáveis: Se você estiver trabalhando
com operações assíncronas repetitivas, considere criar funções
utilitárias para encapsular a lógica da Promise. Isso promove a
reutilização de código e mantém o código mais limpo e legível.

Conheça os métodos auxiliares: Além do then() e catch(),
familiarize-se com outros métodos auxiliares de Promises, como
finally(), Promise.resolve() e Promise.reject(). Esses métodos
podem ser úteis em diferentes situações e podem aprimorar seu
código assíncrono.

Programação
Assíncrona

Promise

Acompanhe algumas dicas para
usar Promises de forma eficaz:

22

Await

O uso do await está diretamente relacionado ao conceito de
Promises e funções assíncronas em JavaScript. Ele permite que
você trabalhe com código assíncrono de forma síncrona,
tornando-o mais legível e fácil de entender. No entanto, é
importante utilizá-lo adequadamente e compreender as
implicações do uso de funções assíncronas no fluxo de execução
do código. Acompanhe algumas dicas para usá-lo de forma
eficaz:

● Use o await somente dentro de funções assíncronas: O
await só pode ser usado dentro de funções declaradas
com a palavra-chave async. Certifique-se de que a função
em que você está usando o await seja marcada como
async.

Programação
Assíncrona

23

Use o await antes de uma expressão Promise: O await é usado
antes de uma expressão Promise para pausar a execução da
função assíncrona até que a Promise seja resolvida. Isso permite
que você aguarde o resultado de uma operação assíncrona
antes de prosseguir.

Armazene o resultado do await em uma variável: Ao utilizar o
await, você pode atribuir o resultado da Promise a uma variável.
Isso permite que você trabalhe com o resultado retornado pela
Promise no restante da função.

Lide com erros utilizando try...catch: Ao utilizar o await, é uma
boa prática envolver o bloco de código que contém o await em
um bloco try...catch. Isso permite que você capture erros caso a
Promise seja rejeitada e trate-os de maneira adequada.

Programação
Assíncrona

24

Não bloqueie o código desnecessariamente: Lembre-se de que
o await pausa a execução do código assíncrono até que a
Promise seja resolvida. Certifique-se de utilizar o await apenas
quando for necessário aguardar a conclusão de uma operação
assíncrona. Caso contrário, você pode bloquear
desnecessariamente a execução do código.

Use o await em sequência: O await pode ser usado em
sequência para aguardar a resolução de várias Promises em
ordem. Isso permite que você execute tarefas assíncronas em
uma determinada ordem e trabalhe com os resultados conforme
eles estão disponíveis.

Esteja ciente do tempo limite (timeout): Ao usar o await,
especialmente em chamadas de API, considere definir um tempo
limite para evitar que o código fique bloqueado indefinidamente
caso a Promise não seja resolvida em um período razoável de
tempo. Você pode fazer isso usando Promise.race() com uma
Promise de tempo limite.

Programação
Assíncrona

25

Planeje a hierarquia de classes: Ao usar o extends, é necessário
planejar adequadamente a hierarquia de classes. Considere
como as classes estão relacionadas entre si e se a relação de
herança é apropriada para o problema que você está
resolvendo.

Defina uma classe pai adequada: Escolha uma classe adequada
para servir como a classe pai na hierarquia de classes. A classe
pai deve conter as características e comportamentos comuns
que podem ser compartilhados pelas classes filhas.

Aproveite os métodos e propriedades herdados: Ao usar o
extends, você pode acessar os métodos e propriedades da
classe pai por meio da instância da classe filha usando a
palavra-chave super. Isso permite que você reutilize e estenda o
comportamento da classe pai.

Orientações a
Objetos com ES6

Extends

Essa palavra reservada é uma parte
essencial da herança em JavaScript,
permitindo a criação de hierarquias de
classes e a reutilização de código.
Acompanhe algumas dicas para usá-la
de forma eficaz:

26

Adicione métodos e propriedades específicos da classe filha:
Aproveite a capacidade de adicionar métodos e propriedades
específicos da classe filha para personalizar seu comportamento.
Isso permite que você estenda e especialize a funcionalidade
herdada da classe pai.

Evite heranças profundas e complexas: Tenha cuidado ao criar
hierarquias de classes profundas e complexas. Muitos níveis de
herança podem levar a um código mais difícil de entender e
manter. Considere utilizar outros princípios de design, como
composição, quando a herança se tornar muito complexa.

Orientações a
Objetos com ES6

Extends

Essa palavra reservada é uma parte
essencial da herança em JavaScript,
permitindo a criação de hierarquias de
classes e a reutilização de código.
Acompanhe algumas dicas para usá-la
de forma eficaz:

27

Chame o construtor da classe pai: Ao usar super() no construtor
da classe filha, lembre-se de chamar o construtor da classe pai.
Isso é importante para garantir que as propriedades da classe
pai sejam inicializadas corretamente antes de adicionar as
propriedades da classe filha.

Use super para acessar métodos da classe pai: A palavra-chave
super permite acessar os métodos da classe pai a partir da
classe filha. Use super.nomeDoMetodo() para chamar o método
da classe pai. Isso é útil quando você quer estender o
comportamento da classe pai na classe filha.

Aproveite super para acessar propriedades da classe pai: Você
pode usar super para acessar as propriedades da classe pai na
classe filha. Isso permite que você acesse ou sobrescreva
propriedades específicas da classe pai dentro da classe filha.

Orientações a
Objetos com ES6
Super

O super é usado para garantir que a
funcionalidade da classe pai seja
reutilizada ou estendida na classe filha,
fornecendo uma maneira de manter
uma relação de especialização entre as
classes. Acompanhe algumas dicas para
usá-lo de forma eficaz:

28

Utilize super no contexto apropriado: Lembre-se de usar
super apenas dentro da classe filha, pois ele não terá
significado fora do contexto da herança. Tenha cuidado
para não usar super onde não é necessário ou onde não
faz sentido.

Aplique o super em sobrescrições de métodos: Ao
sobrescrever um método da classe pai na classe filha,
você pode usar super para chamar o método original da
classe pai. Isso permite que você estenda o
comportamento da classe pai sem perder a
funcionalidade original.

Orientações a
Objetos com ES6
Super

O super é usado para garantir que a
funcionalidade da classe pai seja
reutilizada ou estendida na classe filha,
fornecendo uma maneira de manter
uma relação de especialização entre as
classes. Acompanhe algumas dicas para
usá-lo de forma eficaz:

29

Utilize super com cautela: Embora super seja uma
ferramenta poderosa para acessar membros da classe
pai, é importante usá-lo com cautela. Considere se a
herança é a abordagem correta para o problema que você
está resolvendo e avalie se a relação de herança é
apropriada para o caso em questão.

Evite referências circulares: Evite criar referências
circulares entre classes pai e filha, onde a classe filha
também é uma classe pai de outra classe. Isso pode levar
a um código confuso e difícil de manter. Em vez disso,
procure seguir uma hierarquia de herança clara e evite
dependências complexas.

Orientações a
Objetos com ES6
Super

O super é usado para garantir que a
funcionalidade da classe pai seja
reutilizada ou estendida na classe filha,
fornecendo uma maneira de manter
uma relação de especialização entre as
classes. Acompanhe algumas dicas para
usá-lo de forma eficaz:

30

Bons estudos!

