
26/04/2020 Xamarin parte 3: Aula 1 - Atividade 8 Binding context | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/xamarin-aplicativos-mobile-com-visual-studio-parte-3/task/25375 1/4

 08
Binding context

Transcrição

Aprendemos e nos aprofundamos em relação ao padrão de arquitetura chamado MVVM (Pattern Model-View-

ViewModel), que foi estudado e aplicado em todas as views da aplicação de TestDrive.

Faremos o mesmo agora aplicando-se este padrão à view de login. Entraremos em "TestDrive (Portable) > ViewModels",

clicando nesta pasta com o lado direito do mouse e em "Add > Class", já que criaremos uma nova classe, chamada

LoginViewModel.cs .

Com isto, precisamos de�nir uma instância deste ViewModel como contexto de binding, de amarração, a ser utilizado

na view de login. No arquivo LoginView.xaml , queremos que estas propriedades sejam amarradas como as que estarão

na classe LoginViewModel.cs .

No curso anterior vimos como fazer este binding, a amarração do contexto (binding context) por meio de código C#.

Agora, o veremos de outra forma, amarrando o ViewModel com a View através do código .xaml . De�niremos no

código .xaml da LoginView o namespace , a localização do ViewModel . Ao abrirmos o LoginViewModel.cs , copiaremos

e utilizaremos seu namespace , TestDrive.ViewModels , em LoginView.xaml .

Para nomearmos um namespace em .xaml , precisamos do atributo xmlns , que signi�ca "namespace do xml", um

apelido. Queremos uma palavra curta e de fácil acesso. Em vez de colocarmos TestViewModels , usaremos vm (que

signi�ca ViewModels). Dentro dele, colaremos o que já encontramos como nome de namespace , ou o procuraremos

dentre as opções oferecidas pelo Visual Studio:

xmlns:vm="clr-namespace:TestDrive.ViewModels"

Com isto temos o namespace setado no XAML. Agora precisamos de�nir o contexto de binding do LoginView , a

propriedade BindingContext da ContentPage . Dentro desta tag, de�niremos outra acessando o próprio ContentPage ,

porém colocando-se a propriedade BindingContext . Ao fazermos isto, é como se estivessemos usando o código C# para

this.BindingContext .

Dentro dela, criaremos uma nova instância de LoginViewModel , o qual não aparece como sugestão pelo IntelliSense,

pois o XAML não reconhece este tipo, nem sabe onde está esta classe. Por isto mesmo vamos utilizar o namespace

de�nido anteriormente (vm), como pre�xo. Dentro da tag ContentPage , que já existia antes, acrescentamos as

seguintes linhas:

<ContentPage.BindingContext>
 <vm:LoginViewModel></vm:LoginViewModel>

26/04/2020 Xamarin parte 3: Aula 1 - Atividade 8 Binding context | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/xamarin-aplicativos-mobile-com-visual-studio-parte-3/task/25375 2/4

</ContentPage.BindingContext>

Criamos a nova classe LoginViewModel porém ainda não de�nimos as propriedades. Faremos isto abrindo este arquivo

e de�nindo uma propriedade para cada um dos campos da tela de login. Primeiramente, deixaremos a classe pública,

dentro da qual incluiremos duas propriedades, uma para "Usuário" e outra para "Senha".

Digitaremos "propfull", um atalho muito útil (snippet), apertando-se "TAB" duas vezes logo em seguida. Nos aparece

toda a estrutura de uma propriedade a ser preenchida, em que trocamos o tipo int por string , fazendo o mesmo com

myVar por usuario . Com o "TAB", vamos colocar "Usuario" com a primeira letra em caixa alta, e a propriedade é

de�nida em ViewModel .

namespace TestDrive.ViewModels
{
 public class LoginViewModel
 {
 private string usuario;
 public string Usuario
 {
 get { return usuario; }
 set { usuario = value; }
 }
 }
}

Repetiremos o procedimento para a "Senha", e teremos duas propriedades de�nidas em ViewModel , que serão utilizadas

para o BindingContext com a LoginView :

namespace TestDrive.ViewModels
{
 public class LoginViewModel
 {
 private string usuario;
 public string Usuario
 {
 get { return usuario; }
 set { usuario = value; }
 }

 private string senha;
 public string Senha
 {
 get { return senha; }
 set { senha = value; }
 }
 }
}

No LoginView precisaremos de�nir o BindingContext preenchendo-se os campos de entrada de digitação de "Usuário"

e "Senha". Como visto no curso anterior, é preciso passar a propriedade, ou controle, deste componente Entry , que

receberá o valor da propriedade da classe LoginViewModel . É o Text , a ser preenchido pelo usuário, e que será o

binding, a amarração com a propriedade na classe de LoginViewModel . O código �cará assim:

26/04/2020 Xamarin parte 3: Aula 1 - Atividade 8 Binding context | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/xamarin-aplicativos-mobile-com-visual-studio-parte-3/task/25375 3/4

<StackLayout VerticalOptions="Center" Margin="64">
 <Image Source="aluracar.png"></Image>
 <Entry Placeholder="Usuário" Text="{Binding Usuario}"></Entry>
 <Entry Placeholder="Senha" Text="{Binding Senha}" IsPassword="True"></Entry>
 <Button Text="Entrar" Clicked="Button_Clicked"></Button>
</StackLayout>

Continuando com o padrão MVVM, falta adequarmos o botão do LoginView também. No diagrama mostrado no início

deste vídeo, vemos que o botão neste padrão é feito por meio do comando de binding para ligar a view até ViewModel ,

que é onde deveria estar o código que representa a ação executada assim que o usuário clicar no botão.

Implementaremos o binding do botão removendo o evento Button_Clicked e trocando-o por um comando, e o binding

será feito para uma propriedade que será uma instância de um comando do LoginViewModel , denominado

EntrarCommand :

<StackLayout VerticalOptions="Center" Margin="64">
 <Image Source="aluracar.png"></Image>
 <Entry Placeholder="Usuário" Text="{Binding Usuario}"></Entry>
 <Entry Placeholder="Senha" Text="{Binding Senha}" IsPassword="True"></Entry>
 <Button Text="Entrar" Command="{Binding EntrarCommand}"></Button>
</StackLayout>

Agora vamos até o LoginViewModel para colocarmos uma propriedade que será um comando para o login, o botão. Esta

propriedade terá o private set , pois não conseguiremos alterá-la "do lado de fora", sendo do tipo ICommand e de nome

EntrarCommand .

Precisamos de�nir a instância do comando de entrada dentro do construtor de LoginViewModel . Para isto, digitaremos

"ctor", apertando "TAB" duas vezes, e o Visual Studio estrutura o construtor para nós. Dentro do comando, passaremos

um método anônimo (uma Action), dentro do qual estará o código a ser executado assim que o usuário clicar no botão

de "Entrar". Como estamos migrando para o padrão MVVM, podemos simplesmente pegar a linha executada nesta ação,

que estávamos referenciando no evento Button_Clicked .

Sairemos do LoginViewModel , indo ao LoginView.xaml.cs , que é o code behind da view LoginView , e copiaremos a

linha MessagingCenter.Send<Usuario>(new Usuario(), "SucessoLogin"); , a qual envia uma mensagem informando sobre

o sucesso do login. Colaremos-na no método anônimo onde é executado o comando de entrar.

namespace TestDrive.ViewModels
{
 public class LoginViewModel
 {
 private string usuario;
 public string Usuario
 {
 get { return usuario; }
 set { usuario = value; }
 }

 private string senha;
 public string Senha
 {
 get { return senha; }

26/04/2020 Xamarin parte 3: Aula 1 - Atividade 8 Binding context | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/xamarin-aplicativos-mobile-com-visual-studio-parte-3/task/25375 4/4

 set { senha = value; }
 }

 public ICommand EntrarCommand { get; private set; }

 public LoginViewModel()
 {
 EntrarCommand = new Command(() =>
 {
 MessagingCenter.Send<Usuario>(new Usuario(), "SucessoLogin");
 });
 }
 }
}

Para não deixarmos nenhum "lixo" de código, removeremos o método Button_Clicked de LoginView.xaml.cs , que não

será mais utilizado. Com isto, �zemos o binding tanto para os campos de entrada de "Usuário" e "Senha" quanto para o

comando do botão "Entrar".

Vamos rodar a aplicação e ver se nada foi quebrado, se está tudo funcionando conforme esperado. É recomendável

sempre testarmos a aplicação a cada mudança realizada. Abrindo-se o emulador, digitamos "joao@alura.com.br" no

campo de "Usuário" e "alura123" no de "Senha", apertando "Entrar" em seguida. Conseguimos navegar normalmente

para a página de listagem de veículos sem nenhum problema. Fizemos a transição do nosso código para o padrão

MVVM do Xamarin Forms.

