26/04/2020 Xamarin parte 3: Aula 1 - Atividade 8 Binding context | Alura - Cursos online de tecnologia

[os
Binding context

Transcricdo

Aprendemos e nos aprofundamos em relacéo ao padrdo de arquitetura chamado MVVM (Pattern Model-View-

ViewModel), que foi estudado e aplicado em todas as views da aplicacédo de TestDrive.

MNaotifications

-

Data Binding N
Commands _
i Business
y Presentation F
ul Ul Logic Logic .
(Code Behind) and Data

Faremos o mesmo agora aplicando-se este padrdo a view de login. Entraremos em "TestDrive (Portable) > ViewModels",
clicando nesta pasta com o lado direito do mouse e em "Add > Class', ja que criaremos uma nova classe, chamada

LoginViewModel.cs .

Com isto, precisamos definir uma instancia deste viewModel como contexto de binding, de amarragao, a ser utilizado
na view de login. No arquivo LoginView.xaml , queremos que estas propriedades sejam amarradas como as que estardo

na classe LoginViewModel.cs .

No curso anterior vimos como fazer este binding, a amarracio do contexto (binding context) por meio de cddigo C#.
Agora, o veremos de outra forma, amarrando o ViewModel com a View através do cddigo .xaml . Definiremos no
cédigo .xaml da Loginview O namespace , alocalizacdo do ViewModel . Ao abrirmos o LoginViewModel.cs , copiaremos

e utilizaremos seu namespace , TestDrive.ViewModels ,em LoginView.xaml .

Para nomearmos um namespace em .xaml , precisamos do atributo xmlns , que significa "namespace do xml", um
apelido. Queremos uma palavra curta e de facil acesso. Em vez de colocarmos TestViewModels , usaremos vm (que
significa viewModels). Dentro dele, colaremos o que ja encontramos como nome de namespace , OU O procuraremos

dentre as opc¢oes oferecidas pelo Visual Studio:

xmlns:vm="clr-namespace:TestDrive.ViewModels"

Com isto temos 0 namespace setado no XAML. Agora precisamos definir o contexto de binding do Loginview , a
propriedade BindingContext da ContentPage . Dentro desta tag, definiremos outra acessando o proprio ContentpPage ,
porém colocando-se a propriedade BindingContext . Ao fazermos isto, é como se estivessemos usando o cédigo C# para

this.BindingContext .

Dentro dela, criaremos uma nova instancia de LoginViewModel , 0 qual ndo aparece como sugestdo pelo IntelliSense,
pois 0 XAML néo reconhece este tipo, nem sabe onde esta esta classe. Por isto mesmo vamos utilizar o namespace
definido anteriormente (vm), como prefixo. Dentro da tag ContentPage , que ja existia antes, acrescentamos as

seguintes linhas:

<ContentPage.BindingContext>
<vm:LoginViewModel></vm:LoginViewModel>

https://cursos.alura.com.br/course/xamarin-aplicativos-mobile-com-visual-studio-parte-3/task/25375 1/4

26/04/2020 Xamarin parte 3: Aula 1 - Atividade 8 Binding context | Alura - Cursos online de tecnologia
</ContentPage.BindingContext>

Criamos a nova classe LoginViewModel porém ainda n#o definimos as propriedades. Faremos isto abrindo este arquivo
e definindo uma propriedade para cada um dos campos da tela de login. Primeiramente, deixaremos a classe publica,

dentro da qual incluiremos duas propriedades, uma para "Usudrio" e outra para "Senha".

Digitaremos "propfull", um atalho muito util (snippet), apertando-se "TAB" duas vezes logo em seguida. Nos aparece
toda a estrutura de uma propriedade a ser preenchida, em que trocamos o tipo int por string , fazendo o mesmo com
myVar por usuario . Com o "TAB", vamos colocar "Usuario" com a primeira letra em caixa alta, e a propriedade é

definida em ViewModel .

namespace TestDrive.ViewModels

{

public class LoginViewModel

{

private string usuario;
public string Usuario

{

get { return usuario; }
set { usuario = value; }

Repetiremos o procedimento para a "Senha", e teremos duas propriedades definidas em VviewModel , que serdo utilizadas

para o BindingContext com a LoginView :

namespace TestDrive.ViewModels

{

public class LoginViewModel

{

private string usuario;
public string Usuario

{

get { return usuario; }
set { usuario = value; }

private string senha;
public string Senha

{

get { return senha; }
set { senha = value; }

No Loginview precisaremos definir o BindingContext preenchendo-se os campos de entrada de digitacdo de "Usudrio"
e "Senha". Como visto no curso anterior, é preciso passar a propriedade, ou controle, deste componente Entry , que
recebera o valor da propriedade da classe LoginviewModel . E 0 Text , a ser preenchido pelo usuério, e que serd o

binding, a amarracéo com a propriedade na classe de LoginviewModel . O codigo ficara assim:

https://cursos.alura.com.br/course/xamarin-aplicativos-mobile-com-visual-studio-parte-3/task/25375 2/4

26/04/2020 Xamarin parte 3: Aula 1 - Atividade 8 Binding context | Alura - Cursos online de tecnologia

<StackLayout VerticalOptions="Center" Margin="64">
<Image Source="aluracar.png"></Image>
<Entry Placeholder="Usudrio" Text="{Binding Usuario}"></Entry>
<Entry Placeholder="Senha" Text="{Binding Senha}" IsPassword="True"></Entry>
<Button Text="Entrar" Clicked="Button_Clicked"></Button>
</StackLayout>

Continuando com o padrdo MVVM, falta adequarmos o botdo do Loginview também. No diagrama mostrado no inicio
deste video, vemos que o boto neste padrio é feito por meio do comando de binding para ligar a view até ViewModel ,

que é onde deveria estar o c6digo que representa a acdo executada assim que o usuario clicar no botéo.

Implementaremos o binding do botdo removendo o evento Button_Clicked e trocando-o por um comando, e o binding
sera feito para uma propriedade que serd uma instancia de um comando do LoginviewModel , denominado

EntrarCommand :

<StackLayout VerticalOptions="Center" Margin="64">
<Image Source="aluracar.png"></Image>
<Entry Placeholder="Usuario" Text="{Binding Usuario}"></Entry>
<Entry Placeholder="Senha" Text="{Binding Senha}" IsPassword="True"></Entry>
<Button Text="Entrar" Command="{Binding EntrarCommand}"></Button>
</StackLayout>

Agora vamos até o LoginviewModel para colocarmos uma propriedade que serda um comando para o login, o botdo. Esta
propriedade terd o private set , pois ndo conseguiremos alterd-la "do lado de fora", sendo do tipo ICommand e de nome

EntrarCommand .

Precisamos definir a instancia do comando de entrada dentro do construtor de LoginviewModel . Para isto, digitaremos
"ctor", apertando "TAB" duas vezes, e o Visual Studio estrutura o construtor para nds. Dentro do comando, passaremos
um método anénimo (uma Action), dentro do qual estard o codigo a ser executado assim que o usudrio clicar no botdo
de "Entrar". Como estamos migrando para o padrao MVVM, podemos simplesmente pegar a linha executada nesta acao,

que estavamos referenciando no evento Button_Clicked .

Sairemos do LoginviewModel , indo ao LoginView.xaml.cs , que é o code behind da view LoginView , e copiaremos a
linha MessagingCenter.Send<Usuario>(new Usuario(), "SucessolLogin"); , a qual envia uma mensagem informando sobre

o sucesso do login. Colaremos-na no método an6nimo onde é executado o comando de entrar.

namespace TestDrive.ViewModels

{

public class LoginViewModel

{

private string usuario;
public string Usuario

{

get { return usuario; }
set { usuario = value; }

private string senha;
public string Senha
{

get { return senha; }

https://cursos.alura.com.br/course/xamarin-aplicativos-mobile-com-visual-studio-parte-3/task/25375 3/4

26/04/2020 Xamarin parte 3: Aula 1 - Atividade 8 Binding context | Alura - Cursos online de tecnologia

set { senha = value; }

public ICommand EntrarCommand { get; private set; }

public LoginViewModel()

{
EntrarCommand = new Command(() =>
{
MessagingCenter.Send<Usuario>(new Usuario(), "Sucessologin");
1
}

Para n#o deixarmos nenhum "lixo" de cédigo, removeremos o método Button_Clicked de LoginView.xaml.cs , que ndo
sera mais utilizado. Com isto, fizemos o binding tanto para os campos de entrada de "Usudrio" e "Senha" quanto para o

comando do botdo "Entrar".

Vamos rodar a aplicacio e ver se nada foi quebrado, se est4 tudo funcionando conforme esperado. E recomendavel
sempre testarmos a aplicacdo a cada mudanca realizada. Abrindo-se o emulador, digitamos "joao@alura.com.br" no
campo de "Usuario" e "alural23" no de "Senha", apertando "Entrar" em seguida. Conseguimos navegar normalmente
para a pagina de listagem de veiculos sem nenhum problema. Fizemos a transi¢do do nosso cédigo para o padréo
MVVM do Xamarin Forms.

https://cursos.alura.com.br/course/xamarin-aplicativos-mobile-com-visual-studio-parte-3/task/25375 4/4

