25/01/2020 Design Patterns Java II: Aula 4 - Atividade 2 DSLs e o Interpreter | Alura - Cursos online de tecnologia

O o2
DSLs e o Interpreter

Muitas vezes temos problemas que sfo bem representados por uma arvore. Suponha que devamos fazer uma

calculadora cientifica, que é composta por diversas operacdes, desde as mais simples até as mais complexas.

Por exemplo, imagine que seu sistema deve conseguir resolver a expressio "(2+3)-4/2". Ele deve ser responsavel por

entender essa string e interpreta-la.

E, com certeza um trabalho complicado. E algo parecido, por exemplo, com o que a JVM faz quando 1 o bytecode. Vocé

consegue pensar em uma implementacio pra isso que seja simples? E dificil!

Dado que temos muitas expressoes diferentes em uma calculadora, como por exemplo, adico, subtracéo, etc,

precisamos achar uma maneira simples de lidar com essa complexidade, e a ideia de criar novas expressoes.

Imagine entdo que representemos essas operacoes como classes. Pensando em abstragdes, poderiamos ter uma

interface Expressao , e criar classes Soma e Subtracdo , asimplementam:

Expressao conta = new Soma(new Numero(10), new Numero(20));

Podemos ter expressdes ainda mais complicadas:

Expressao esquerda = new Subtracao(new Numero(10), new Numero(5));
Expressao direita = new Soma(new Numero(2), new Numero(10));

Expressao conta = new Soma(esquerda, direita);

Veja que uma soma recebe no construtor duas outras "expressdes", que podem ser um nimero ou mesmo uma outra

expressao.

Vamos ver a implementacéo disso, em c6digo:

public interface Expressao {

public class Subtracao implements Expressao {

private Expressao esquerda;
private Expressao direita;

public Subtracao(Expressao esquerda, Expressao direita) {
this.esquerda = esquerda;
this.direita = direita;

public class Soma implements Expressao {

https://cursos.alura.com.br/course/design-patterns-2/task/3981 1/4



25/01/2020 Design Patterns Java II: Aula 4 - Atividade 2 DSLs e o Interpreter | Alura - Cursos online de tecnologia

private Expressao esquerda;
private Expressao direita;

public Soma(Expressao esquerda, Expressao direita) {

this.esquerda = esquerda;
this.direita = direita;

Veja que a classe Soma e a classe Subtracao cada uma guarda outras duas expressdes dentro. O que faz sentido, ja que a

subtracdo subtrai o nimero da esquerda com o da direita. Andlogo para a soma.

Precisamos também implementar a classe Numero , que representa um simples nimero:

public class Numero implements Expressao {

private int numero;
public Numero(int numero) {
this.numero = numero;

Excelente. J4 temos a nossa estrutura de dados pronta. Ela consegue bem representar qualquer expressdo que

queremos. Basta instanciar os objetos corretos.

O préximo passo agora ¢ interpretar essa "arvore". Ja que todos os elementos devem ser interpretados; podemos
garantir isso colocando o método avalia() na interface, que devolve um inteiro (afinal, esse é o resultado do nosso

processamento).

public interface Expressao {
int avalia();

Vamos comecar pela classe Numero . Interpretar um Numero é facil: basta retornar ele préprio.

public class Numero implements Expressao {

private int numero;
public Numero(int numero) {
this.numero = numero;

@Override
public int avalia() {
return numero;

Ja o da soma ou da subtracio, é um pouco mais complicado. Precisamos "interpretar" o lado da esquerda primeiro,

depois o da direita, e ai sim fazer a conta:

https://cursos.alura.com.br/course/design-patterns-2/task/3981 2/4



25/01/2020 Design Patterns Java II: Aula 4 - Atividade 2 DSLs e o Interpreter | Alura - Cursos online de tecnologia

public class Soma implements Expressao {

private Expressao esquerda;
private Expressao direita;

public Soma(Expressao esquerda, Expressao direita) {
this.esquerda = esquerda;
this.direita = direita;

@Override

public int avalia() {
int resultadoDaEsquerda = esquerda.avalia();
int resultadoDaDireita = direita.avalia();
return resultadoDaEsquerda + resultadoDaDireita;

public class Subtracao implements Expressao {

private Expressao esquerda;
private Expressao direita;

public Subtracao(Expressao esquerda, Expressao direita)
this.esquerda = esquerda;
this.direita = direita;

@Override

public int avalia() {
int resultadoDaEsquerda = esquerda.avalia();
int resultadoDaDireita = direita.avalia();
return resultadoDaEsquerda - resultadoDaDireita;

Veja que cada avalia() agora sabe interpretar sua propria expressio, e expressdes podem avaliar outras expressoes,

podemos tentar calcular o resultado de uma expressao inteira.

public class Programa {

public static void main(String[] args) {

Expressao esquerda = new Subtracao(new Numero(10), new Numero(5));
Expressao direita = new Soma(new Numero(2), new Numero(10));

Expressao conta = new Soma(esquerda, direita);

int resultado = conta.avalia();
System.out.println(resultado);

https://cursos.alura.com.br/course/design-patterns-2/task/3981

3/4



25/01/2020 Design Patterns Java II: Aula 4 - Atividade 2 DSLs e o Interpreter | Alura - Cursos online de tecnologia

Veja que nossa drvore consegue interpretar, e calcular o resultado final. Quando temos expressoes que devem ser

avaliadas, e a transformamos em uma estrutura de dados, e depois fazemos com que a propria arvore se avalie, damos o

nome de Interpreter.

O padrio é bastante util quando temos que implementar interpretadores para DSLs, ou coisas similares. £ um padrio

bem complicado, mas bastante interessante.

https://cursos.alura.com.br/course/design-patterns-2/task/3981 4/4



