
25/01/2020 Design Patterns Java II: Aula 4 - Atividade 2 DSLs e o Interpreter | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/design-patterns-2/task/3981 1/4

 02
DSLs e o Interpreter

Muitas vezes temos problemas que são bem representados por uma árvore. Suponha que devamos fazer uma

calculadora cientí�ca, que é composta por diversas operações, desde as mais simples até as mais complexas.

Por exemplo, imagine que seu sistema deve conseguir resolver a expressão "(2+3)-4/2". Ele deve ser responsável por

entender essa string e interpretá-la.

É, com certeza um trabalho complicado. É algo parecido, por exemplo, com o que a JVM faz quando lê o bytecode. Você

consegue pensar em uma implementação pra isso que seja simples? É difícil!

Dado que temos muitas expressões diferentes em uma calculadora, como por exemplo, adição, subtração, etc,

precisamos achar uma maneira simples de lidar com essa complexidade, e a ideia de criar novas expressões.

Imagine então que representemos essas operações como classes. Pensando em abstrações, poderíamos ter uma

interface Expressao , e criar classes Soma e Subtração , as implementam:

Expressao conta = new Soma(new Numero(10), new Numero(20));

Podemos ter expressões ainda mais complicadas:

Expressao esquerda = new Subtracao(new Numero(10), new Numero(5));
Expressao direita = new Soma(new Numero(2), new Numero(10));

Expressao conta = new Soma(esquerda, direita);

Veja que uma soma recebe no construtor duas outras "expressões", que podem ser um número ou mesmo uma outra

expressão.

Vamos ver a implementação disso, em código:

public interface Expressao {

}

public class Subtracao implements Expressao {

 private Expressao esquerda;
 private Expressao direita;

 public Subtracao(Expressao esquerda, Expressao direita) {
 this.esquerda = esquerda;
 this.direita = direita;

 }
}

public class Soma implements Expressao {

25/01/2020 Design Patterns Java II: Aula 4 - Atividade 2 DSLs e o Interpreter | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/design-patterns-2/task/3981 2/4

 private Expressao esquerda;
 private Expressao direita;

 public Soma(Expressao esquerda, Expressao direita) {
 this.esquerda = esquerda;
 this.direita = direita;
 }
}

Veja que a classe Soma e a classe Subtracao cada uma guarda outras duas expressões dentro. O que faz sentido, já que a

subtração subtrai o número da esquerda com o da direita. Análogo para a soma.

Precisamos também implementar a classe Numero , que representa um simples número:

public class Numero implements Expressao {

 private int numero;
 public Numero(int numero) {
 this.numero = numero;
 }
}

Excelente. Já temos a nossa estrutura de dados pronta. Ela consegue bem representar qualquer expressão que

queremos. Basta instanciar os objetos corretos.

O próximo passo agora é interpretar essa "árvore". Já que todos os elementos devem ser interpretados; podemos

garantir isso colocando o método avalia() na interface, que devolve um inteiro (a�nal, esse é o resultado do nosso

processamento).

public interface Expressao {
 int avalia();
}

Vamos começar pela classe Numero . Interpretar um Numero é fácil: basta retornar ele próprio.

public class Numero implements Expressao {

 private int numero;
 public Numero(int numero) {
 this.numero = numero;
 }

 @Override
 public int avalia() {
 return numero;
 }
}

Já o da soma ou da subtração, é um pouco mais complicado. Precisamos "interpretar" o lado da esquerda primeiro,

depois o da direita, e aí sim fazer a conta:

25/01/2020 Design Patterns Java II: Aula 4 - Atividade 2 DSLs e o Interpreter | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/design-patterns-2/task/3981 3/4

public class Soma implements Expressao {

 private Expressao esquerda;
 private Expressao direita;

 public Soma(Expressao esquerda, Expressao direita) {
 this.esquerda = esquerda;
 this.direita = direita;
 }

 @Override
 public int avalia() {
 int resultadoDaEsquerda = esquerda.avalia();
 int resultadoDaDireita = direita.avalia();
 return resultadoDaEsquerda + resultadoDaDireita;
 }
}

public class Subtracao implements Expressao {

 private Expressao esquerda;
 private Expressao direita;

 public Subtracao(Expressao esquerda, Expressao direita) {
 this.esquerda = esquerda;
 this.direita = direita;

 }

 @Override
 public int avalia() {
 int resultadoDaEsquerda = esquerda.avalia();
 int resultadoDaDireita = direita.avalia();
 return resultadoDaEsquerda - resultadoDaDireita;
 }
}

Veja que cada avalia() agora sabe interpretar sua própria expressão, e expressões podem avaliar outras expressões,

podemos tentar calcular o resultado de uma expressão inteira.

public class Programa {

 public static void main(String[] args) {

 Expressao esquerda = new Subtracao(new Numero(10), new Numero(5));
 Expressao direita = new Soma(new Numero(2), new Numero(10));

 Expressao conta = new Soma(esquerda, direita);

 int resultado = conta.avalia();
 System.out.println(resultado);
 }
}

25/01/2020 Design Patterns Java II: Aula 4 - Atividade 2 DSLs e o Interpreter | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/design-patterns-2/task/3981 4/4

Veja que nossa árvore consegue interpretar, e calcular o resultado �nal. Quando temos expressões que devem ser

avaliadas, e a transformamos em uma estrutura de dados, e depois fazemos com que a própria árvore se avalie, damos o

nome de Interpreter.

O padrão é bastante útil quando temos que implementar interpretadores para DSLs, ou coisas similares. É um padrão

bem complicado, mas bastante interessante.

