
27/04/2020 Shell Scripting parte 1: Aula 5 - Atividade 5 Criando arquivos de log completo | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/shellscripting/task/28953 1/4

 05
Criando arquivos de log completo

Transcrição

Com o comando ps -p 14009 -o size é impresso o tamanho da memória alocada do processo informado. Entretanto, o

resultado que temos é um tamanho em kilobytes mostrado a seguir:

 SIZE
931348

Ao dividir esse valor em kilobytes por 1024, conseguimos ter o valor em megabytes!

O primeiro passo é eliminar a linha de cabeçalho SIZE , pois queremos somente o número. Como podemos solucionar

esse problema?

Como já visto, utilizamos o grep para redirecionar a saída desse resultado, mostrando somente o valor numérico.

$ ps -p 14009 -o size | grep [0-9]

E temos o seguinte resultado:

931348

Agora que temos o resultado com números, podemos pensar em fazer a divisão com o comando echo 931348/1024 .

Porém, quando fazemos isso, o echo imprime literalmente o valor 931348/1024 , mas esperamos que uma operação de

divisão seja feita.

Para que possamos ter essa operação de divisão, utilizaremos a ferramenta bc que vai realizar a divisão entre os

valores e passaremos os parâmetros da divisão, através de >>> :

$ bc <<< 931348/1024

E temos o resultado da divisão:

909

Se calcularmos essa operação na calculadora, veremos que o valor será de 909,51953125 . Podemos recalcular de uma

forma que tenha uma precisão maior. Suponhamos que valor tenha duas casas após a vírgula.

Para isso, trabalharemos com escala de 2, e envolveremos a operação entre aspas.

$ bc <<< "scale=2;931348/1024"

27/04/2020 Shell Scripting parte 1: Aula 5 - Atividade 5 Criando arquivos de log completo | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/shellscripting/task/28953 2/4

E como resultado, obtemos esse valor 909.51 , com duas casas após a vírgula. Vamos copiar os dois comandos criados,

para que nós coloquemos no script processos-memoria.sh .

for pid in $processos
do
 nome_processo=$(ps -p $pid -o comm=)
 echo -n $(date +%F,%H:%M:%S,) >> $nome_processo.log
 tamanho_processo=$(ps -p $pid -o size | grep [0-9])
done

Então, colamos o comando testado no terminal, o envolvemos no $(), apagamos o valor do processo Firefox 14009 para

que seja possível pegar o número do processo respectivo da variável $pid e ,assim, armazenamos o resultado na

variável tamanho_processo .

O próximo passo é colar o segundo comando no Script:

for pid in $processos
do
 nome_processo=$(ps -p $pid -o comm=)
 echo -n $(date +%F,%H:%M:%S,) >> $nome_processo.log
 tamanho_processo=$(ps -p $pid -o size | grep [0-9])
 echo $(bc <<< "scale=2;$tamanho_processo/1024") >> $nome_processo.log
done

Redirecionamos a impressão para o arquivo .log . Como toda a linha é um comando, o envolvemos em $() . O valor

numérico 931348 é o valor estático do processo do Firefox. Por essa razão, pegamos o conteúdo do $tamanho_processo

que será dividido por 1024.

Para melhorar o script, sabemos que o resultado será em megabytes, por isso, colocamos o comando entre aspas e

dizemos que seu resultado é um valor em megabytes:

echo "$(bc <<< "scale=2;$tamanho_processo/1024") MB">> $nome_processo.log

Ao chegar até aqui, �zemos um grande avanço. Mas, vamos fazer uma melhoria. Para que os arquivos não �quem

espalhados por todos os lugares, vamos colocá-los dentro de um diretório. Aqui mesmo dentro do diretório /Scripts e

veri�caremos se existe um diretório chamado de /log , onde salvaremos todos esses arquivos. Caso ele não exista,

vamos criá-lo.

Logo no início do script, faremos essa veri�cação.

#!/bin/bash

if [! -d log]
then
 mkdir log
fi

Agora com a certeza de que o diretório /log vai existir, podemos salvar os arquivos dentro do /log que foi criado.

27/04/2020 Shell Scripting parte 1: Aula 5 - Atividade 5 Criando arquivos de log completo | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/shellscripting/task/28953 3/4

#!/bin/bash

if [! -d log]
then
 mkdir log
fi

processos=$(ps -e -o pid --sort -size | head -n 11 | grep [0-9])
for pid in $processos
do
 nome_processo=$(ps -p $pid -o comm=)
 echo -n $(date +%F,%H:%M:%S,) >> log/$nome_processo.log
 tamanho_processo=$(ps -p $pid -o size | grep [0-9])
 echo $(bc <<< "scale=2;$tamanho_processo/1024") >> log/$nome_processo.log
done

É importante saber se os arquivos foram salvos com sucesso ou se houve algum problema. Então, podemos fazer essa

veri�cação por meio do status de saída. Caso ele seja 0 é porque está tudo "ok". Se for diferente de 0 , é porque um

problema ocorreu.

Como já vimos, podemos envolver todo o código em uma função e, assim, veri�car qual será o status de saída dessa

função.

Chamaremos essa função de processos_memoria() :

processos_memoria(){
processos=$(ps -e -o pid --sort -size | head -n 11 | grep [0-9])
for pid in $processos
do
 nome_processo=$(ps -p $pid -o comm=)
 echo -n $(date +%F,%H:%M:%S,) >> log/$nome_processo.log
 tamanho_processo=$(ps -p $pid -o size | grep [0-9])
 echo $(bc <<< "scale=2;$tamanho_processo/1024") >> log/$nome_processo.log
done
}

Após criar a função vamos invocá-la no �nal do código.

processos_memoria(){
processos=$(ps -e -o pid --sort -size | head -n 11 | grep [0-9])
for pid in $processos
do
 nome_processo=$(ps -p $pid -o comm=)
 echo -n $(date +%F,%H:%M:%S,) >> log/$nome_processo.log
 tamanho_processo=$(ps -p $pid -o size | grep [0-9])
 echo $(bc <<< "scale=2;$tamanho_processo/1024") >> log/$nome_processo.log
done
}

processos_memoria

Uma vez chamada a função, vamos veri�car seu status de saída:

27/04/2020 Shell Scripting parte 1: Aula 5 - Atividade 5 Criando arquivos de log completo | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/shellscripting/task/28953 4/4

processos_memoria
if [$? -eq 0]
then
 echo "Os arquivos foram salvos com sucesso"
else
 echo "Houve um problema na hora de salvar os arquivos"
fi

Hora de testar o script!

Não esqueça de sair e salvar: "Ctrl + X" "Y"

Ao executar o script bash processos-memoria.sh , temos o status de saída: os arquivos foram salvos sem nenhum

problema. Ao acessar o diretório /log , encontramos arquivos com os nomes dos processos junto de suas respectivas

extensões .log .

Clicando em um desses arquivos, por exemplo, vamos encontrar informações parecidas com essa:

2017-07-21,16:57:47,909.51 MB

Temos a data, o horário e a locação em MB. Comentamos em um momento anterior sobre ter colocado o símbolo >>

antes de salvar o processo na pasta log. Isso quer dizer que agora eles têm o conteúdo que acabamos de executar. Se

executarmos novamente, as informações serão mantidas e, ainda, serão acrescentadas as novas informações. Vamos

ver se realmente ocorre isso! Vamos rodar novamente o script.

Clicando em algum dos arquivos, vamos ter uma linha a mais de informações e vemos que a informação anterior se

manteve, assim como havíamos planejado.

2017-07-21,16:57:47,909.51 MB
2017-07-21,16:59:05,909.51 MB

Tarefa concluída com sucesso!

