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DISTRIBUICAO AMOSTRAL

Nesta se¢do, estudaremos a distribuicdo de probabilidade dos principais estimadores, chamada de
Distribuicao Amostral. Vale ressaltar que os estimadores sao variaveis aleatdrias.

Inicialmente, cabe pontuar que a distribuicdo de uma amostra aleatéria qualquer segue a mesma
distribuicdo populacional.

Para entender melhor esse conceito, vamos considerar uma moeda com 2 faces, que vamos denominar face
- - L 1

0 e face 1. Tratando-se de uma moeda equilibrada, a probabilidade de cada face é de 5= 0,5 e a esperanca

e variancia sao, respectivamente:

u=EX) =Zx.P(X= %)

E(X)=0x05+1x%x05=0,5

V(X) = Z(x — D2 P(X = x)

1 025+0,25

= 0,25
2 2

V(X)=(0-0,5)%x % +(1-0,5)%x

Suponha que vamos extrair uma amostra aleatdrias de tamanho 3, ou seja, vamos lancar a moeda 3 vezes.
Podemos representar essa amostra por X;, X5, X3.

Considerando que os possiveis resultados das amostras sdo os mesmos da populagao (0 ou 1) e com as
. 1 ~
mesmas probabilidades de 5= 0,5 para cada face, entdo temos:

1 1 025+0,25
VXD = V() = V(X) = (0-0,5)2 x5+ (1-05)? x5 = ————— =

2
> > 0,25

Ou seja, a esperanca e a variancia de cada amostra sdo iguais as da populagdo:

EX)=EX)=p

V(X)) =V(X) =02

Mais precisamente, toda a distribuigao de probabilidade da amostra é igual a distribuicdo de probabilidade
da populacdo (as esperancas e as variancias sdo iguais como consequéncia desse fato).
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No exemplo do langamento da moeda, a populagao é infinita, pois podemos langar a moeda infinitas vezes.
Quando a populagdo é infinita (ou muito grande em comparag¢do com o tamanho da amostra) ou quando a
amostra é extraida com reposicdo dos elementos selecionados, entdo as amostras sdo independentes.

Nesses casos, dizemos que as varidveis que representam as amostras, X;, X, X3, ..., sdo independentes e
identicamente distribuidas (i.i.d.), isto é, sdo independentes e apresentam a mesma distribuicdo.

HORA D

PRATICAR!

(FGV/2021 - FunSaude/CE) Se Xi, Xz, ... Xn € uma amostra aleatéria simples de uma determinada distribuicdo
: de probabilidades f(x), avalie se as afirmativas a seguir estdo corretas. :

: 1. X1, Xy, ... Xn sd0 independentes.

Il. X1, X2, ... Xn sdo identicamente distribuidos.

: lll. Nem sempre cada X, i = 1,..., n, tem distribuigdo f(x).
: Esta correto o que se afirma em

: a) |, apenas.

: b) lell, apenas.

c) I elll, apenas.

d) Il e lll, apenas.

e)l, llell.

: Comentarios:

: Essa questdo trabalha com conceitos de distribuicdo amostral. A base da distribuicio amostral é que os
: elementos de uma amostra (que o enunciado denotou por Xi, Xz, ... Xn) sdo varidveis aIeatériasg
independentes que apresentam a mesma distribuicdo da populacdo (consequentemente, apresentam a
: mesma média e a mesma variancia). :

: Assim, as afirmativas | e Il estdo corretas, enquanto a afirmativa Il estd incorreta, pois cada variavel X; :
: apresenta a mesma distribuicdo f(x) da populagdo (sempre). :

! Gabarito: B

Agora, estudaremos a distribuicdo dos estimadores mais utilizados, quais sejam, a média, a proporc¢ao e a
variancia amostrais.
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Distribuicao Amostral da Média

Para estimarmos a média da populacdo u, utilizamos como estimador a média amostral X. Sendo
X1,X5, ..., X, os valores observados da amostra, a média amostral é a razdo entre a soma dos valores
observados, X; + X, + -+ + X;;, e o niumero de elementos observados, n:

X1+X2+"'+Xn
n

X =

Assim como os demais estimadores, a média amostral é uma variavel aleatéria, uma vez que X varia de
acordo com os valores observados da amostra X;, X5, ..., X,,.

Vamos ao exemplo da moeda langada 3 vezes. Se o resultado for {0, 0, 1}, a média amostral sera:

g 0F0+1 1
-3 377

Se o resultado for {0, 1, 1}, por exemplo, a média amostral sera:

g O0¥1+1_2
-3 37

E qual seria a esperanca desse estimador? Bem, sabendo que as faces possiveis sdo 0 e 1, cada uma com 50%
de chance, esperamos que as médias desse experimento estejam em torno de 0,5.

Ou seja, a esperanga da média amostral é igual a média populacional?

EX)=n

E quanto a variancia? A variancia da média amostral é dada por:

Ve _ o
0 _

V(X) =

Para o exemplo dos 3 lancamentos da moeda, em que V(X) = 0,25 e n = 3, a varidncia da média amostral é:
_ 0,25
V(X) = = = 0,08

Note que a variancia da média amostral, V(X), é menor do que a variancia populacional, V(X). Além disso,
guanto maior o tamanho da amostra, n, menor sera a variancia da média amostral.

Isso ocorre porque a média das observacdes, X, costuma ser um valor bem mais préximo da média u (ou
seja, apresenta bem menos valores extremos) do que as observagdes X por si sd. Isso significa que a variancia
da média amostral, X, € menor do que a variancia das observacdes, X. Lembrando que as observacdes da
amostra seguem a mesma distribuicdo da populacdo, entdo a variancia da média amostral, V(X), é menor
do que a variancia da populacdo.
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O desvio padrao (raiz quadrada da variancia) de um estimador pode ser chamado de erro padrao.

O erro padrdo (ou desvio padrao) da média amostral é dado por:

EP()?)=\/W=\/§=%

Ou seja, o erro padrdo (ou devio padrao) da média amostral pode ser calculado como a raiz quadrada da

variancia da média amostral, /V(X), ou como a razdo entre o desvio padrido populacional e a raiz do
, g
numero de elementos da amostra, N

Também podemos denotar o erro padrdao (ou desvio padrao) da média amostral por oz. Para o nosso
exemplo, o erro padrdo da média amostral pode ser calculado como:

(=]
N
vl

)

3

EP(X) =JV(X) =

As férmulas da esperanca e variancia podem ser obtidas a partir das respectivas

X1+X2+"'+Xn

propriedades. Sendo X = , a esperanca E(X) é dada por:

3 _ X1+X2+"'+Xn _ ﬁ ﬁ . ﬁ
BOO = B (S2) = B () + B () + -+ £ ()
ER) = ~EXy) +-E(X) + -+ - E(X,)
Vimos que a esperanc¢a amostral é igual a esperanca populacional, E(X;) = E(X) = u:
= 1 1 1 1
E(X) —;[J+;[J+"‘+;[J—HX;X”—[!
Considerando que as variaveis X1, X5, ..., X;,, sao independentes, a variancia V()?) é:
) = p (XatXetHXn ) _ v (K X2\, .. Xn
VI =V (B = v () +V () + -+ V (3
S 1 1 1
VX) = ﬁV(Xﬂ + ;V(Xz) + et EV(Xn)
Sabendo que a variancia amostral é igual a variancia populacional, V(X;) = V(X) = ¢2:
2

Yy _ 1 2,1 2 1 2 _ 1 2_0
VIX) =0 +—0°+-+—0* =nXx—xo?=—



Victor
Destacar


A variancia amostral é igual a variancia populacional, V(X;) = V(X) = 62. O que é

2
. , on . 7 ge = o
diferente é a varidncia da média amostral, V(X) = —

Note que a variancia da média amostral € menor do que a variancia populacional. Isso faz sentido, certo?
As médias sempre variam menos do que os valores individuais, pois os valores extremos acabam sendo
compensados quando calculamos a média. Logo, a distribuicdo da média amostral é menos dispersa do que
a distribuicao populacional.

HORA D

PRATICAR!

(CESPE/2016 — TCE/PA) Uma amostra aleatdria, com n = 16 observacdes independentes e identicamente
: distribuidas (IID), foi obtida a partir de uma populagdo infinita, com média e desvio padrdo desconhecidos e :
: distribuicdo normal. Tendo essa informagdo como referéncia inicial, julgue o seguinte item. :

: Para essa amostra aleatdria simples, o valor esperado da média amostral é igual a média populacional.

: Comentarios:

: Vimos que, de fato, o valor esperado da média amostral (para uma amostra aleatdria) é igual a média :
: populacional. :

: Gabarito: Certo.

(2019 — UEPA) Considere uma amostra aleatéria X4, X,,...,X,, de uma populagdo normal de média u e

X1,X2,Xn

variancia 2 = 9. Entdo, a média e a varianciade X,, = , Sa0, respectivamente,

A el
;auen.

: 9
b)%e;.

E c) e
A
: n

id)ue-.

cdpeg

: Comentarios:

: Vimos que a média e a variancia da média amostral sdo, respectivamente:

EX)=u
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Gabarito: C.

(VUNESP/2015 — TJ-SP) Resultados de uma pesquisa declaram que o desvio padrdo da média amostral é 32.
: Sabendo que o desvio padrdo populacional € 192, entdo o tamanho da amostra que foi utilizada no estudo :
: foi :
a) 6.

 b) 25.

c) 36.

o,

e) 70.
Comentarios:

: O desvio padrdo (ou erro padrdo) da média amostral pode ser calculado como a razdo entre o desvio padrao :

: da populagdo e a raiz do nimero de elementos da amostra:
o
Og =—

Vn

O enunciado informa que o desvio padrao da média amostral é gz = 32 e o desvio padrdo populacional é
: 0 = 192. Logo: :
192
~Vn
192

=——=6
vn 32

n = (6)? = 36

32

Gabarito: C.

(FCC/2012 — TRE-SP) Uma variavel aleatéria U tem distribui¢do uniforme continua no intervalo [a, 3a]. Sabe-
se que U tem média 12. Uma amostra aleatdria simples de tamanho n, com reposicdo, é selecionada da
: distribuicdo de U e sabe-se que a variancia da média dessa amostra é 0,1. Nessas condigbes, o valor de n é

: a) 80.

b) 100.

c) 120.

d) 140.

e) 150.
Comentarios:

: O que essa questdo exige a respeito da matéria que acabamos de estudar é a férmula do desvio padrdo da :
: média amostral: :



Oy =
Vn
: Assim, podemos escrever o tamanho amostral como:
: G :
n=—
Ox

n=\\— = —
_ 2
i ox o
: Ou seja, o tamanho amostral é a raz3o entre a variancia populacional o2 (quadrado do desvio padrdo
: populacional o) e a variancia da média amostral 0)% (quadrado do desvio padrdao da média amostral o).

O enunciado informa que a variancia da média amostral é 0)% =0,1.

: Pronto! A matéria desta aula acabou. Agora, para calcular a variancia populacional, precisamos saber calcular
: a média e a variancia da distribui¢cdo continua uniforme.

A média (esperanca) dessa distribuicdo é igual a média aritmética dos limites do intervalo, a e b. Sabendo '
quea=a, b=3.aekE(X)=12, conforme dados do enunciado, temos:

a+b

E(X) = —
_at+3a  4a
12 = > —7—2a

a=6

Ou seja, a=6e b =3x6=18. Entdo, a variancia é dada por:

(b-a)? (18-6)?% (12)?

X) = 12
: v 12 12 12
Voltando a nossa formula para encontrar o tamanho amostral, temos:
; or_12_ . '
nN=s—=—-=
oz 01

Gabarito: C

1

Fator de Correg¢ao para Populacao Finita

Os resultados da variancia e do desvio padrdo da média amostral sdo validos para variaveis X;, X5, ..., X,
independentes, ou seja, quando a populacdo é infinita ou quando as amostras sdo extraidas com reposicao.

Quando isso ndo ocorre, ou seja, quando a populagdo é finita e as amostras sdo extraidas sem reposicdo,

precisamos fazer um ajuste. Sendo n o tamanho da amostra e N o tamanho da populagcdo, precisamos

N

019 on . 7 qs ~ ~ . o -n
multiplicar a variancia da média amostral, pelo fator de corre¢ao de populagao finita T

— 2 _
a0 =Sk
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Observe que o fator de correcdao é menor do que 1, pois N —n < N — 1, logo, o ajuste para populagdes
finitas, cuja amostras sdo extraidas com reposicdo, diminui a variancia da média amostral.

Distribuicao da Média Amostral e a Curva Normal

Quando a populagdo segue distribuicdo normal (ou gaussiana), a média amostral também seguira
distribuicdo normal. Como vimos anteriormente, a esperanga, a variancia e o desvio padrdo (chamado erro
padrdo) dessa distribuicdo serdo:

EX)=yp
_ o?
VD) = —
— o
EP(X) ==

Ainda que a populagdo nao siga distribuicao normal, pelo Teorema Central do Limite, é possivel aproximar
— — 2
a distribuicdo da média amostral, a uma normal, também com média E(X) = py, variancia V(X) = % e

desvio padrio (erro padrdo) EP(X) = \/E—ﬁ

De modo equivalente, também podemos dizer que a variavel Z, definida abaixo, segue distribui¢ao normal
padrdo (ou reduzida), isto é, com média igual a 0 e desvio padrdo igual a 1, o que representamos como
N(0,1):

X—u
g
Vn

A possibilidade de tal aproximacdo depende do tamanho da amostra e da distribuicao da populacdo.
Quanto maior o tamanho da amostra e quanto mais préoximo de uma normal for a distribuicao da populagado,
melhor serd a aproximagao. Usualmente, considera-se que para uma amostra grande, com n = 30, a
aproximacado serad satisfatéria, para qualquer distribuigao populacional.

g =

PRATICAR!

: (CESPE/2014 — ANATEL) Com base no teorema limite central, julgue o item abaixo.

: Sendo uma amostra aleatdria simples retirada de uma distribuicdo X com média W e variancia 1, a distribuicdo :
: da média amostral dessa amostra, X, converge para uma distribuicdo normal de média nu e varidncia 1, a :
: medida que n aumenta. :
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Comentarios:
Vimos que a distribuicdo da média amostral, X, converge para uma distribuigéo normal a medida que n
aumenta. Porém, a média dessa dlstrlbuu_;ao é E(X) = pevarianciaV(X) = ) .SabendoqueV(X) =1, a
varidncia da média amostral é V(X) = ;. '

: Gabarito: Errado.

(CESPE 2018/PF) O tempo gasto (em dias) na preparac¢do para determinada operacdo policial € uma variavel
aleatdria X que segue distribuicdo normal com média M, desconhecida, e desvio padrdo igual a 3 dias. A
observacdo de uma amostra aleatdria de 100 outras operagdes policiais semelhantes a essa produziu uma
média amostral igual a 10 dias. Com referéncia a essas informacdes, julgue o item que se segue, sabendo
: que P(Z > 2) = 0,025, em que Z denota uma varidvel aleatéria normal padréo.

O erro padrao da média amostral foi inferior a 0,5 dia.
: Comentarios:

: O erro padrdo da média amostral é dado por:

_ o
EP(X) = ﬁ
Na formula acima, temos: n é o tamanho da amostra (=10); o é o desvio padrdao amostral (=3).
EP(X) = 3 = 3 =03
100 10

Gabarito: Certo.

(CESPE/2019 — Analista Judiciario TJ) Um pesquisador deseja comparar a diferenga entre as médias de duas
amostras independentes oriundas de uma ou duas populagdes gaussianas. Considerando essa situacao
: hipotética, julgue o préximo item.

: Para que a referida comparacdo seja efetuada, é necessario que ambas as amostras tenham N 2 30.
: Comentarios:

: Quando a populagdo segue uma distribuicdo normal (ou gaussiana), a média amostral também seguird uma :
: distribuicdo normal, independente do tamanho da amostra. Logo, o item esta errado.

: Para fins de complementac3o, se a amostra for grande o suficiente (nhormalmente, consideramos isso para :
: n > 30), a média amostral seguira aproximadamente uma distribuicdo normal, independente da distribuicdo :
: populacional.

: Gabarito: Errado.

(FCC 2015/SEFAZ-PI) Instrucdo: Para responder a questdo utilize, dentre as informacdes dadas a seguir, as
: que julgar apropriadas. Se Z tem distribuicdo normal padrdo, entdo: :

: P(Z<0,4) = 0,655; P(Z < 1,2) = 0,885; P(Z < 1,6) = 0,945; P(Z < 1,8) = 0,964; P(Z < 2) = 0,977.

: Uma auditoria feita em uma grande empresa considerou uma amostra aleatdria de 64 contas a receber. Se 5
: a populagdo de onde essa amostra provém é infinita e tem distribuicdo normal com desvio padrdo igual a RS



200,00 e média igual a RS 950,00, a probabilidade da varidvel aleatéria média amostral, usualmente
denotada por X, estar situada entre RS 980,00 e RS 1.000,00 é dada por :

: a) 18,4%
 b)9,2%
éc)zas%
éd)4Z7%
e) 86,2%
Comentarios:
O enunciado informa que a populacdo segue distribuicdo normal, logo, a média amostral também tera
: distribuicdo normal. Assim, utilizamos a seguinte transformagdo para a normal padrdo: :
: P
o

Vn
O enunciado informa que o tamanho da amostra é n = 64, logo, Vn = 8; que a média populacional é yu =
: 950 e que o desvio padrdo populacional é ¢ = 200. Substituindo esses valores, a transformagao para X,y = :
: 980 é: :

Zg =

Z__980—950_30 8 _6_12
¥=7200 %200 5
_ 8
Para X, = 1000, temos:
Z__1000—950_50 8 —>
X200 T 200
8

Ou seja, a probabilidade desejada corresponde a P(1,2 < Z < 2), que pode ser calculada pelos dados
: fornecidos no enunciado: :

: P(12<Z<2)=P(Z<2)—-P(Z<12)=0977—-0,885 = 0,092 =9,2%
Gabarito: B

Distribuicdo Amostral da Propor¢ao

Agora, vamos trabalhar com uma popula¢gdo em que determinada caracteristica esta presente em uma
proporcdo p dessa populagdo, por exemplo, 15% da populagdo apresenta olhos azuis; 20% da populagdo
estd doente, 1% da producdo apresenta defeito, etc.

Um elemento qualquer da populacdo X pode apresentar a caracteristica estudada, o que chamamos de
sucesso (X = 1), ou ndo, o que chamamos de fracasso (X = 0). A probabilidade de sucesso é p e a
probabilidade de fracasso é g = 1 — p. Assim, essa populagdo apresenta uma distribui¢do de Bernoulli, com
parametro p.
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Sendo essa propor¢do populacional desconhecida, precisamos estima-la a partir da propor¢do de sucessos
na amostra, denotada por p. Considerando que cada observagdo X; da amostrasera X; = O ouX; = 1 (como
para a populagdo), entdo a proporgdo de sucessos na amostra pode ser calculada por:

X1+ Xp++Xp
n

=

Vamos supor, por exemplo, que estejamos interessados na proporcdo de defeitos em uma producdo de
medicamentos. Para estimad-la, extraimos uma amostra de 10 medicamentos, que apresentou o seguinte
resultado, em que O representa um item nao defeituoso e 1 representa um item defeituoso:

{0,0,1,0,0,0,1,0,0, 0}

Logo, a propor¢do encontrada nessa amostra é:

 _0+0+1+0+040+1+04+040 2 _ _
p= 10 ~“10

Note que o estimador p é calculado da mesma forma que X. Logo, a esperanga de P é calculada da mesma
forma que para X, utilizando p no lugar de u:

E@)=p

Ou seja, a esperanga do estimador é igual a propor¢ao populacional. Em outras palavras, a proporcdo
amostral tende a proporg¢ao populacional.

A variancia de p também é calculada da mesma forma que para X, ou seja:

V(p)

V() = =

Sabendo que X segue distribuicdo de Bernoulli, temos V(p) = p.q, entdo:

5) = P4
V) ==

E o erro padrdo (ou desvio padrao) para p, raiz quadrada da sua variancia é dado por:

BPGp) = [22
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Sem conhecer a propor¢do populacional, p, ndo podemos calcular a varidncia da populacdo, V(p) = p.q.
Assim, utilizamos o estimador P calculado a partir da amostra para estimar a variancia e o desvio padrao.

A estimativa da variancia populacional é dada por:
V(p) =p.q

Em que § = 1 — p. E a estimativa da variancia do estimador p é:

>

p.

V) = -~

Para o nosso exemplo, em que encontramos p = 0,2 (logo, § = 1 —p = 0,8). A estimativa da variancia da
proporgdo populacional é:

V(p) =p.§=02x08=0,16

E a estimativa da variancia da propor¢dao amostral é:

5.4 0,2%0,8

D 3
V() == 5 =0016

Logo, a estimativa para o erro padrdo (ou desvio padrdo) da propor¢do amostral é:

EP(®) =/V(p) = /0,016 = 0,126

Considerando que cada elemento da populacdo segue distribuicdo de Bernoulli, entdo o numero de
elementos com o atributo sucesso encontrados em uma amostra de tamanho n segue uma distribuicao
binomial, com parametros n e p. Para o nosso exemplo, temos uma distribui¢cao binomial com n = 10 e
proporgdo estimada p = 0,2.

Porém, assim, como vimos para a média amostral, também podemos aproximar, pelo Teorema Central do
Limite, essa distribuicdo a uma normal, com média E(p) = p e variancia V(p) = %, quando o tamanho da

amostra, n, é grande.

Por outro lado, se a populacdo for finita e a amostra for extraida sem reposi¢ao, sera necessario aplicar o
- = _ @ oA o N—-n
fator de correc¢do para populagao finita, multiplicando a variancia por pvE

N _pq N-n
e =
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PRATICAR!

(CESPE 2016/TCE-PA) Em estudo acerca da situacdo do CNPJ das empresas de determinado municipio, as
: empresas que estavam com o CNPJ regular foram representadas por 1, ao passo que as com CNPJ irregular
: foram representadas por 0. :

Considerando que a amostra
{0,1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,1,1,1, 1}

: Foi extraida para realizar um teste de hipdteses, julgue o item subsequente.
A estimativa pontual da proporcdo de empresas da amostra com CNPJ regular é superior a 50%.
: Comentarios:
: O estimador da proporgdo p é dado por:
Xi+X+--+ X,
- n

. 0+1+1+0+0+1+0+1+0+1+1+0+0+1+1+0+1+1+1+1 12

: Logo a proporgao é de 60%.
: Gabarito: Certo

(CESPE/2019 — TJ-AM) Para estimar a proporcdo de menores infratores reincidentes em determinado
municipio, foi realizado um levantamento estatistico. Da populacdo-alvo desse estudo, constituida por
10.050 menores infratores, foi retirada uma amostra aleatéria simples sem reposicao, composta por 201
individuos. Nessa amostra foram encontrados 67 reincidentes. Com relacado a essa situacdo hipotética, julgue
: 0 seguinte item. :

A estimativa do erro padrao da proporcdao amostral foi inferior a 0,04.
: Comentarios:
O erro padrao da proporc¢ao é dada pela relagao:

pXxq
n

E =

FA guestdo nos diz que a amostra é composta por 201 individuos, sendo 67 deles reincidentes. Assim, temos
: quen = 201ep =67/201 = 1/3. Logo, temosq = 1 —p = 2/3. Como consequéncia, o erro padrdo é de: :

_ 1373 _ -
E= 201  [1809 — 0,033

Gabarito: Certo.



X1+X2+"'+Xn

Estimador para a média: X = —

— — 2 —
Esperanca: E(X) = y; Variancia: V(X) = %; Erro Padrdo: EP(X) = in

<]

. oA Xyt+Xpt+X,
Estimador para a propor¢do: p = %

Esperanca: E(p) = p; Variancia: V(p) = pn;q; Erro Padrio: EP(X) = |22

Distribuicao Amostral da Variancia

Quando a variancia da populacdo é desconhecida, precisamos estima-la a partir da amostra, assim como
fizemos com a média e a proporc¢do. O estimador da variancia que utilizamos para uma amostra de tamanho
né:

2 _ LXi=X) i

S
n—-1

Utilizamos esse estimador, com a divisdao por n — 1, pelo fato de ele ser melhor do que o estimador que

&

apresenta a divisao por n.

EXEMPLIFICANDO

Vamos supor que a variancia da altura de determinado grupo de adultos seja desconhecida,
assim como a sua média. Para estimar esses parametros, obtemos uma amostra de 5
pessoas com os seguintes resultados:

{1,65; 1,75; 1,8; 1,85; 1,95}

Primeiro, precisamos calcular a média da amostra (que continua sendo calculada pelo
somatério das observacgdes, dividido por n):
YX; _ 165+1,75+1,8+1,85+1,95 9

=2t =18
n 5 5
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Agora, calculamos o estimador da varidancia, somando os desvios em relagdo a média,
elevados ao quadrado, e dividindo o somatério por n — 1:

2 _ 2(Xi-X)?
- n-1

S

§2 = (1,65-1,8)2+(1,75-1,8)?+(1,8—1,8)%+(1,85-1,8)%+(1,95-1,8)?
4

§2 = (=0,15)2+(-0,05)2+(0)2+(0,05)2+(0,15)?
4

0,0225+0,0025+0,0025+0,0225 __ 0,05
st = " == = 0,0125

Sabe-se que uma maneira alternativa de calcular a variancia (populacional) é:
0?2 =EX?) —[E(X)]?

Para a variancia amostral, também podemos utilizar uma férmula similar a essa, mas com
as devidas adaptagdes. No lugar de E(X), utilizamos a média amostral X; e, no lugar de
E(X?), utilizamos X2, que é a média dos valores elevados ao quadrado:

T X7
n

X7 =
Para o exemplo anterior, teriamos:

X7 = (1,65)2+(1,75)%+(1,8)%+(1,85)2+(1,95)? _ 16,25
- 5 ~ 5

= 3,25

Por fim, ajustamos o denominador. Para calcular a variancia populacional, dividimos por n
e para a variancia amostral, dividimos por n — 1. Logo, precisamos multiplicar o resultado

or -
P n-1

s? = [ﬁ—()?)z]xﬁ

Para o nosso exemplo, em que X2 = 3,25, X = 1,8 en = 5, a variancia amostral pode ser
calculada como:

0,01x5

s? = [3,25 - (1,8)*] x> = [3,25 - 3,24] x> = =0,0125




Para esse estimador, a sua esperanga € igual a variancia populacional, analogo ao que ocorreu com os
demais estimadores. A sua variancia e erro padrdo sdo dados por:

E(s?) = ¢?
= 27|
V(s?) = —

EP(s?) = |2-0o2

S
=

Sem conhecer a variancia populacional, g%, ndo podemos calcular esses pardmetros. Para isso, utilizamos,
no lugar de o2, a prépria estimativa s2.

Para 0 nosso exemplo, em que calculamos s? = 0,0125, para a amostra com n = 5 observacdes, o desvio
padr3o (ou erro padrdo) de s? pode ser estimado como:

2
2 x 0,0125 = 0,009

n-1

~ . . . . o~ ~ . 2 . .
Se a populagao seguir uma distribuicdo normal, entdo o estimador s“, multiplicado pelo fator 2 Segue

uma distribui¢do qui-quadrado com n — 1 graus de liberdade:

n—1
Xﬁ_lz( ).52

o2

Em outras palavras, o estimador s® é uma variavel com distribuicdo qui-quadrado, com n — 1 graus de
2

- o _qs o

liberdade, multiplicada por —

2= (55) - Xt

n—

Vamos supor que, para uma populacdo normal, a varidncia populacional seja 62 = 1, e que vamos extrair
amostras de tamanho n = 5. Nesse caso, a varidncia amostral s tera a seguinte distribuicdo:

Ou seja, a variancia amostral seguird uma distribuicdo qui-quadrado com n — 1 = 4 graus de liberdade,
dividida por 4.

Assim, inserimos a tabela da distribuicdo qui-quadrado com 4 graus de liberdade, que apresenta os valores
de probabilidade P(X? < x) e os respectivos valores de x. Como a varidncia amostral segue essa distribuicao,
dividida por 4, criamos uma terceira coluna, dividindo os valores de x por 4:
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P(X{ <x) 0,005 | 0,01 | 0,025| 005 | 01 | 025 | 05 | 075 | 09 | 0,95 | 0,975 | 0,99 | 0,995

x 0,21 | 030 | 0,48 | 0,71 | 1,06 | 1,92 | 3,36 | 539 | 7,78 | 9,49 | 11,14 | 13,28 | 14,86

x/4 0,05 | 0,07 | 0,22 | 0,18 | 0,27 | 0,48 | 0,84 | 1,35 | 1,94 | 2,37 | 2,79 | 3,32 | 3,72

Ou seja, a probabilidade de a variancia amostral observada ser inferior a 0,48 é:

P(s?2<0,48) =0,25

Vamos com

®, TUDO!

gt

A partir desse resultado, podemos calcular a esperanca e a varidncia do estimador. A
esperanca é dada por:

2
A 2
5= (n—l) - Xn—1

n—-1 n-—1

Els?] = E (). X2 = () Elx2]

Considerando que a média de uma distribuicdo qui-quadrado com k graus de liberdade é
igual a k, entdo fazendo k = n — 1, temos:

E[Xﬁ_1]=k=n—1

Substituindo no resultado anterior, temos:
Els?] = (Z).(n- 1) = 0?
T \n-1/" -

Esse é o resultado que vimos no inicio da secdo. A varidncia do estimador é:

2 4

Vsl = v|(5) %3] = (5) vixdal = (555) vix]

n-1

Considerando que a variancia de uma distribuicdo qui-quadrado com k graus de liberdade
é igual a 2k, entdo fazendo k = n — 1, temos:

VIx2_,]=2k=2.(n—1)

Substituindo no resultado anterior, temos:

21 _ (_o* _ 1y _ 20
V[s?] = (<n_1>z)-2- (n—1) =2




"

Vale acrescentar que uma populagdao normal depende dos dois parametros, variancia e média, os quais sao
independentes. Consequentemente, os estimadores correspondentes também serdo independentes.

HORA DE
PRATICAR!

(FGV/2016 — IBGE) Suponha que uma amostra de tamanho n = 5 é extraida de uma populacdo normal, com

: média desconhecida, obtendo as seguintes observacoes:

X1=3,X2=5,X3=6,X2=9e X5=12

: S0 dados ainda os seguintes valores, retirados da tabela da distribuicdo qui-quadrado:

e P(y2<5)=0,713

e P(x?<12,5)= 0,986

‘e P(¥2>5)=0,854

e P(x?>12,5)=0,971

Se a populagdo tem variancia verdadeira 2 = 4, em nova amostra (n = 5), a probabilidade de se observar :
uma variancia amostral maior do que a anterior é de: :

: 2) 0,014
: b) 0,029

i ¢) 0,146

d) 0,287

: e) 0,713

: Comentarios:

Para resolver essa questdo, vamos primeiro calcular a varidncia amostral obtida nessa primeira amostra:
7 2
, XX —X)
S = ——mm—m
n—1
Para isso, precisamos da média amostral:

3+5+6+9+12 35

X= 5 5

: Agora, podemos calcular a varidncia amostral dessa primeira amostra:

B-=-72+G-7*+6-72*+0O-7)*+12-7)
4

_(—4)2+(—2)2+(—1)2+(2)2+(5)2_16+4+1+4+25_50_125
= = =5 =12,

h

st 4 4




: Para calcular a probabilidade de a variancia amostral ser s2 > 12,5, consideramos que esse estimador é uma :

. 2
distribuicdo qui-quadrado com n — 1 graus de liberdade, multiplicada por (%)

0.2
52 = (n — 1>.x€_1

: Sabendo que a variancia populacional é 0? = 4 e que o tamanho da amostra é n = 5, ent3o:

4
= (55) X2 =2

Portanto, a variancia amostral segue a mesma distribuicdo de X'Z. A probabilidade de s? > 12,5 &, portanto:
P(s?>12,5) = P(X}? > 12,5) :
0 enunciado informa que P(X}? < 12,5) = 0,986. A probabilidade P(X? > 12,5) é complementar:
: P(X}>125) =1—-P(X} <125 =1-0,986 = 0,014

Distribuicdes para Amostragem Estratificada

Para uma amostragem estratificada, com k estratos, a média amostral sera dada por:

Nessa expressdao, N; é o tamanho de cada estrato; N é o tamanho total da populagdo; e x;, a média amostral
observada para cada estrato.

Ou seja, calculamos a média X, para cada estrato i, multiplicamos cada valor pelo tamanho do estrato N; e
dividimos pelo tamanho total N.

Para ilustrar, vamos supor uma populacdo dividida em 3 estratos, com os seguintes tamanhos N; e os
seguintes valores de média amostral x; para cada estrato i:

Estrato N; ni X,
1 50
2 30
3 20
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A média amostral para toda a popula¢do corresponde, entdao, as médias amostrais dos estratos, ponderadas
pelos respectivos tamanhos dos estratos:

50x2+30x3+20x4 100+90+80

X= 100 100

2,7

Considerando a férmula da média amostral, podemos calcular a variancia da média amostral:

V(X) = V(Ek: iz)

i=1

=z| =

Pelas propriedades da variancia, temos:

k 2

v =y (1) v

i=1

Sendo a variancia populacional de cada estrato desconhecida, precisamos estima-la a partir da estimativa

da variancia para cada estrato encontrada na amostra estratificada. Substituindo, na férmula acima, V (X)

por s e V(&) por sz, temos:

RN

k 2
23 (0 o
N Xi

h=1

Além disso, a estimativa da variancia da média amostral para cada estrato i, s,%i, considerando uma amostra

de tamanho n; para tal estrato, ja com a corregdo para populagdo finita é dada por:

<2 = 5_31-<Ni - ni)
*i n; Ni -1

Vamos supor que as estimativas da variancia para cada estrato sejam:

Estrato N; ni X Sz,
1 50 5 2 2
2 30 3 3 1,5
3 20 2 4 1
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Assim, as variancias das médias amostrais para cada estrato s3do:

) —2(50_5>~0367

5 T5\50-1/) "

) —1’5<30_3>~0466

% T3 \30-1)" "

) _1(20—2>~0474

% =\20-1) "

E a variancia da média amostral global é dada por:

2—<50>2><0367+(30)2x0466+<20)2x0474
** = \100 ’ 100) 100 ’

sZ=0,25x% 0,367 + 0,09 x 0,466 + 0,04 x 0,474 = 0,092 + 0,042 + 0,019 = 0,153

PRATICAR!

: (CESPE/2018 — STM) Um estudo acerca do tempo (x, em anos) de guarda de autos findos em determinada
secdo judiciaria considerou uma amostragem aleatdria estratificada. A populacdo consiste de uma listagem
de autos findos, que foi segmentada em quatro estratos, segundo a classe de cada processo (as classes foram
estabelecidas por resolucdo de autoridade judiciaria.) A tabela a seguir mostra os tamanhos populacionais
(N) e amostrais (n), a média amostral (X) e a varidncia amostral dos tempos (s?) correspondentes a cada

: estrato.
Tamanhos Populacionais (N) | Tamanhos Amostra (n) .

30.000 20 3
B 40.000 400 15 16
C 50.000 500 10 5
D 80.000 800 el =
Total 200.000 2.000 - -

! Considerando gue o objetivo do estudo seja estimar o tempo médio populacional (em anos) de guarda dos
: autos findos, julgue os itens a seguir. :



(CESPE/2018 — STM) A estimativa do tempo médio populacional da guarda dos autos findos é maior ou igual

: Em que k é a quantidade de estratos; N; o tamanho de cada estrato; e X, a média de cada estrato.

a 12 anos.
Comentarios:

Em uma amostra aleatdria por estratificacdo, a média da populacao é calculada pela relacao

Vinculando os estratos A, B, Ce D aos numeros 1, 2, 3 e 4, respectivamente, temos:

Ny X X7 + Ny X %; + N3 X T3 + Ny X X5

X =
N
7 30000 x 20 + 40000 x 15 + 50000 x 10 + 80000 x 5
N 200000
X_60+60+50+4O
N 20
X =105

Gabarito: Errado.

: (CESPE/2018 — STM) Combinando-se todos os estratos envolvidos, a estimativa da varidncia do tempo médio

: amostral da guarda dos autos findos é inferior a 0,005 ano?.

Comentarios:

Em uma amostragem estratificada, a estimativa da variancia da média da amostragem é dada pela relacdo:

k N2
#= 30
=1
Em que
o2 = S_:i(Ni - ni)
Xi n; Ni 1

: Pelos valores apresentados na tabela, teremos:

2

3 (30000 — 300
XA 7300\ 30000 -1

) = 0,0099



) 16 (40000 — 400

2 = 0,0396
55 = 200\ 40000 — 1 )

, 5 (50000—500

2 _ = 0,0099
%% =500\ 50000 — 1 )

) 8 (80000 — 800

2 _ = 0,0099
% = 800\ 80000 — 1 )

Além disso, temos que:

(NA)Z B ( 30000 )2 00225
N/ \200000/

Ng\* /40000 \?
(%) = (zo0000) =04
N 200000

(NC)Z _ ( 50000 )2 00625
N/ ~\200000/

(@)2 _ ( 80000

2
N 200000) =016

Portanto:

L N 2
h
st= (%) xsh
h=1
sZ =(0,0225-0,0099 + 0,04 - 0,0396 + 0,0625 - 0,0099 + 0,16 - 0,0099)
sZ =(0,0225 + 0,0625 + 0,16) - 0,0099 + 0,04 - 0,0396
s2 = 0,0041.

Gabarito: Certo.

5
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ESTIMACAO PONTUAL

A estimagdo pontual é o valor (nimero) calculado para o estimador. Os principais estimadores sdo a média
amostral X, a proporcdo amostral p e a variancia amostral s2.

Agora, vamos entender por que esses estimadores sdo utilizados. Vamos estudar as propriedades que
estimadores devem apresentar e os métodos utilizados para obté-los.

Propriedades dos Estimadores

N3o é qualquer estimador que vamos querer utilizar para estimar os parametros populacionais. Eles devem
apresentar determinadas caracteristicas desejaveis.

Suficiéncia

Uma estatistica (isto é, uma fun¢do dos dados observados) é considerada suficiente se ela captura, a partir
da amostra obtida, toda a informagdo possivel sobre o parametro populacional desconhecido, de modo
que qualquer outra informacdo ndo contribuird com a estimacdo do parametro populacional.

Por exemplo, sabemos que a média amostral é utilizada para estimar a média populacional. Essa estatistica
é considerada suficiente porque ela captura toda a informacao, disponivel na amostra, necessaria para
estimar a média populacional. Qualquer outra informa¢ao, como a média geométrica ou a variancia da
amostra, ndo influencia na estimativa da média populacional.

Mais especificamente, sendo X e Y duas amostras que fornecem o mesmo valor para a estatistica, T(X) =
T(Y), (por exemplo, a mesma média amostral), entdo essa estatistica serd considerada suficiente se a
inferéncia sobre o parametro populacional 8 for a mesma, independente de X ou Y. Dizemos que uma
estatistica T(X) é suficiente para o parametro populacional 8, se a distribuicao da amostra, condicionada
ao parametro T(X), for independente de 6.

Em outras palavras, uma estatistica suficiente € uma forma de resumir as informacdes presentes na amostra,
sem perder as informag6es necessarias para estimar o parametro populacional. Por exemplo, a soma dos
valores presentes em uma amostra de tamanho n é uma estatistica suficiente para a média da populagao,
pois, para estima-la, basta dividirmos essa estatistica por n. Nao importa quais sejam os valores exatos de
cada varidvel presente na amostra; se a soma for a mesma, a estimativa para a média sera sempre a mesma.

Todos os estimadores que mencionamos anteriormente (média amostral X, propor¢3o amostral p e variancia
amostral s2) sdo considerados suficientes.
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Ha, ainda, as seguintes definicdes relacionadas a suficiéncia:

o Uma estatistica é dita suficiente minimal se ela for uma fungdao de qualquer outra
estatistica suficiente.

o Por outro lado, uma estatistica S(X) é dita anciliar se ela ndo trouxer informagao
alguma a respeito do parametro 6, isto é, se S(X) for independente de 6.

o Porfim, uma estatistica T é dita completa para o parametro 0, se o fato de a esperanga
de uma fungdo ¢g(T) ser igual a zero para todo 6, E[g(T)] =0, implicar
necessariamente em g(T) = 0 para todo 6.

Por exemplo, para uma amostra X;, X5, ..., X;, com distribui¢cao de Bernoulli e parametro p,
por exemplo, p = 0,2, a estatistica T = X; — X, nao é completa. Isso porque a esperanca
é E[X,] = E[X,] = p = 0,2, logo a esperanga da estatistica é:

E[X, — X;] = E[X1] — E[X;] =0

E isso vale para qualquer valor de p. Porém, T = X; — X, ndo é necessariamente igual a
zero, pois é possivelter X; = 1e X, = 0outambém X; =0e X, = 1.

HORA D

PRATICAR!

(CESPE/2018 EBSERH) X1, X2, ..., X10 representa uma amostra aleatéria simples retirada de uma distribuic3o :

: normal com média u e variancia 62, ambas desconhecidas. Considerando que /i e o2 representam os :
: respectivos estimadores de maxima verossimilhanca desses parametros populacionais, julgue o item :
i subsecutivo. :

: A soma X1+ X +...+ X10 € uma estatistica suficiente para a estimagao do parametro u.
: Comentarios:

: Observe que a soma dos elementos captura todas as informacg&es disponiveis na amostra para a estimacao :
: da média, de modo que qualquer outra informagdo (média, variancia,...) a respeito dessa amostra nao ira :
: influenciar na estimagdo do parametro populacional. :

: Afinal, a estimativa para o parametro u serd a mesma, sempre que a soma das 10 varidveis for a mesma,
: independentemente dos seus resultados exatos. Logo, a soma dos elementos é uma estatistica suficiente.

Gabarito: Certo.



(CESPE/2013 — Telebras) A respeito de inferéncia estatistica, julgue o item que se segue.

Considerando uma amostra aleatéria simples X1, Xz, X3 retirada de determinada distribuicdo de Bernoulli,
: com parametro p desconhecido, € correto afirmar que X1+X2.X3 é estatistica suficiente. :

: Comentarios:

: Observe que ao multiplicarmos X2.Xs ha uma possibilidade de perda de informacdo, pois sendo um dos :
: elementos iguais a zero, ficamos sem a informacdo do outro elemento, ou seja, ha perda de informagao.

: Assim, ter uma outra informacdo a respeito dessa amostra ird contribuir com a estimacdo do parametro p.

Por exemplo, se tivermos X1 =1, X2=1 e X3= 0 e, portanto, X1 + X2.X3 = 1, a estimativa para a proporgdo p
sera p=2/3; esetivermos X1 =1, X2=0e X3=0, e, portanto, o mesmo valor para a estatistica, X1+ X2.X3=1,
: a estimativa para p serd p = 1/3. :

Ou seja, a estimagao do parametro p desconhecido pode ser diferente, mesmo se o resultado da estatistica
: for igual. :

: Logo, essa estatistica ndo é suficiente.

Gabarito: Errado.

Dizemos que um estimador 8 é nao viesado (também chamado de nao viciado ou ndo tendencioso) quando
a sua esperanca é igual ao parametro populacional 6 sendo estimado:

E(6yr) =6

Em relagao aos principais estimadores que mencionamos anteriormente, temos:

EX)=u
E@)=p
E(s?) = o?

Logo, podemos afirmar que a média amostral X é um estimador ndo viesado (ENV) para a média
populacional; o pardmetro amostral p é um ENV para o parametro populacional; e s é um ENV para a
variancia populacional.
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NOTA!

O estimador para a variancia populacional é definido como:

2 _ L(Xi-X)?
- n—1

S

. Isso

. . . , . Y(X;—X) 2
Dissemos, ainda, que esse estimador é melhor do que o estimador s? = %

decorre do fato de o estimador s? ser tendencioso, ou seja:

E(s?) # o2

Outra forma de descrever essa propriedade é a partir do erro, dado pela diferenca entre o estimador e o
parametro populacional:

®
I

D)y
I

SN

A esperanca do erro é chamada de viés do estimador (ou tendenciosidade), denotado por b(é):

b(6) = E(e)

O viés pode ser calculado pelas propriedades da esperanca:

b(6) =E(e)=E(H—-06)=E(0) —E(6)

b(6) =E(H) -6

Ou seja, o viés representa a diferenca entre a média (ou esperanca) das estimativas e o parametro a ser
estimado. Para um estimador 8* ndo tendencioso, a sua esperanca é E(8%) = 6. Logo, o viés do estimador
(esperanca do erro) é nulo:

b(Oyr) =E(0yr) —0=60—-6=0
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EXEMPLIFICANDO

Vamos supor uma amostra de n = 5 elementos X1, Xz, X3, X4 € Xs de uma variavel X com
média u desconhecida. Agora, vamos calcular o viés do seguinte estimador para a média u:

0=X+X,+Xs—X,— X5
b(8) = E(6) - u
b(0) =EX;+ X, + X5 — X4 — Xs) — 1t
Pelas propriedades da esperanca, temos:
b(0) = E(X:) + E(X2) + E(X3) = E(Xy) — E(Xs) — 1

Considerando que a amostra segue a mesma distribui¢cdo da populagdo, temos E(X;) =
E(X) = u, logo:

b(O)=p+p+p—p—p—pu=0

Portanto, esse estimador é ndo viesado. Vejamos um outro exemplo de estimador para a
média u:

6 =X, — X,
b(6) =E0) —u

b(0)=EX;—X)) —u=EX)—EX) —p=p—p—p=—p

Portanto, o estimador 8’ é viesado, com viés no valor de —p.

J4, a variancia do erro é chamada de Erro Quadratico Médio (EQM):

EQM(0) =V (e)

Desenvolvendo a expressao da variancia do erro, podemos obter o seguinte resultado:

EQM(8) = v(8) + [b(®)]*
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Ou, simplesmente:

EQM(8) = o2 + b?

Ou seja, o Erro Quadratico Médio (EQM) é a soma da variancia do estimador com o quadrado do viés do
estimador.

Para estimadores ndo viesados, o viés do estimador é b(HNT) = 0, logo, o EQM ¢é igual a variancia do
estimador:

EQM(Oyr) = V(6nr)

Para ilustrar, inserimos abaixo a expressdao do EQM de um estimador em que a primeira parcela corresponde

a variancia do estimador V(@) e a segunda parcela corresponde ao quadrado do viés do estimador [b(@)]z
(como na prova da FGV/2017 — IBGE):
6 —1\°
+(5)
n

.. 1\ .~ . , . , .
Podemos observar que o viés, (T)’ nao é nulo, logo, concluimos que o estimador é tendencioso.

2

~ 3.
EoM(8,) ==

)

EXEMPLIFICANDO

Agora, vamos calcular o EQM dos estimadores para a média y, que vimos anteriormente.

Para isso, precisamos da variancia e do viés do estimador. Como ja calculamos o viés, falta
calcular a sua variancia.

9=X1+X2 +X3—X4—X5
V(0) =V(X1 4+ Xo+ X5 — X4 — X5)

Se as amostras forem independentes (populacdo infinita ou amostra extraida com
reposicao), entdo, pelas propriedades da variancia, temos:

V(8) = V(X)) + V(Xy) + V(X3) + V(X,) + V(Xs)
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Considerando que a amostra segue a mesma distribuicdo da populagdo, temos V(X;) =
V(X) = 2, logo:

V(D) =02 +0%+ 0%+ 0%+ 0% =502
Como o viés é nulo, o EQM desse estimador é igual variancia:
EQM(0) =V () = 502

Para o outro exemplo de estimador, a variancia é (considerando as amostras
independentes):

é\, = Xl —_ XZ
V(é\’) = V(Xl _XZ) = V(Xl) + V(XZ) = 0'2 + 0'2 = 20‘2

Ja calculamos o viés do estimador b(@’) = —LU.

Portanto, o EQM é:

EQM(8) = V(8) + [b(8)]” = 202 + [-u]? = 202 + 2

Se as amostras nao forem independentes, a variancia da soma e da subtracdo de duas varidveis é dada por:

VX, + X,) = V(X,) + V(Xy) + 2. Cov(Xy, X5)

VX, — X,) = V(Xy) + V(Xy) — 2.Cov(Xy, X5)

Podemos também combinar estimadores, formando um novo estimador, por exemplo:

0=0+¢0

Como saberemos se o novo estimador é tendencioso ou néo?

Como fizemos anteriormente, aplicando a formula do viés:

b(8) = E(e) = E(§) — 6
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EXEMPLIFICANDO

—~ —~

Em relacdo ao estimador 8 = 8 + 6’ para a média populacional WU, O seu viés é:
b(é) = E(e) =E(5)—M=E(§+§')—u
Sabendo que a esperanga da soma é a soma das esperancgas (propriedade), temos:
b(8) = E(8) + E(8) — u

Para esse exemplo, vimos que o primeiro estimador é ndao tendencioso, logo, a sua
esperanca é E(0) = p.

Ja o segundo estimador é tendencioso com viés b(@’) = —u. Assim, a sua esperanga pode
ser calculada pela férmula do viés:

b(@) = E(6) —u=—u
E(6")=0

Substituindo os valores de E(é) =ue E(é\’) = 0 na equagao b(é) = E(é) + E(HA’) — U,
temos:

b(é)z,u+0—,u=0

Como o viés é nulo, esse estimador é nao tendencioso!

PRATICAR!

(2019/AnaI|sta Censitario — Adaptada) E conhecido que o erro quadratico médio (EQM(A)) mede, em média,
: qudo perto um estimador 6 chega ao valor real do parametro 6. Diante do exposto, julgue os itens seguintes:

|- EQM(@) € uma medida que combina viés e variancia de um parametro;
: Il — para estimadores viesados, EQM(A) é igual a variancia;
E 11— EQM(D) = 8 - Viés(D).

: Comentarios:



: Em relacdo ao primeiro item, o EQM(@) combina viés e varidncia de um estimador (ndo do pardmetro :
: populacional), logo o item | estd incorreto. :

: Em relagdo ao segundo item, o EQM(8) é igual a varidncia para um estimador ndo viesado, logo o item Il esta :
i incorreto. :

Em relagdo ao terceiro item, a férmula do erro quadrdtico médio é:

~ ~ A2
EQM(8) =Vv(0) + [vies(0)]
Logo, o item Il esta incorreto.

Resposta: todos os itens errados.

(FGV/2022 - EPE - Adaptada) Considere uma amostra aleatdria de n varidveis X1, Xz, ..., Xn, normalmente
: distribuidas com média p e variancia o2. Considere o seguinte estimador da média populacional: :

Sobre as propriedades desse estimador, julgue o seguinte item.
O estimador é n3o-tendencioso.
Comentarios:

: Para um estimador ndo tendencioso, a sua esperanca é igual ao parametro populacional estimado, no caso, :
: a média u. Vamos entdo calcular a esperanga do estimador T': :

_ 1%
E(T) = E(EE)([)

: Quando multiplicamos uma varidvel por uma constante, a sua esperanca sera multiplicada por essa :
: constante (propriedade da esperanca), logo: :

E(T) =%.E(in>

i=1

Ademais, a esperanca da soma de varidveis é igual a soma das esperancas (outra propriedade da esperanca):
: ) :
_ 1
B == ) EX)
i=1

: Considerando que cada varidvel da amostra segue a mesma distribuicdo da populagdo, temos E(X;) = pu.
: Portanto, a soma )i, E(X;) para as n varidveis corresponde a n. u:

E(T) = — a
= mpu=
: Que é diferente de u. Logo, o estimador T é tendencioso.

Resposta: Errado.



(CESPE 2020/TJ-PA) Um estimador que fornece a resposta correta em média é chamado ndo enviesado.
Formalmente, um estimador é ndo enviesado caso seu valor esperado seja igual ao parametro que esta
sendo estimado. Os possiveis estimadores para a média populacional (p) incluem B, média de uma amostra,
o, a menor observacdo da amostra, e it, a primeira observacao coletada de uma amostra. Considerando essas
: informagdes, julgue os itens subsequentes. :

| A média de uma amostra (B) é exemplo de um estimador enviesado para a média populacional (i), pois seu
: valor esperado € igual @ média populacional, ou seja, E(B) = p. :

: Il A menor observacdo da amostra (a) € um exemplo de estimador ndo enviesado, pois o valor da menor :
: observacdo da amostra deve ser inferior a média da amostra; portanto, E(a) < W. :

: Il A primeira observagdo coletada de uma amostra equivale a tomar ao acaso uma amostra aleatéria da :
: populagdo de tamanho igual a um e, portanto, é considerado um estimador nao enviesado.

Assinale a opgao correta.

a) Nenhum item estd certo.

b) Apenas o item | estd certo.

c) Apenas o item Il estd certo.

d) Apenas o item Il esta certo.
e) Todos os itens estdo certos.
Comentarios:

A questdo trabalha com alguns estimadores: a média amostral B, que normalmente chamamos de X; a menor
observagdo da amostra, a; e a primeira observagao, . Em relagao ao item |, sabemos que o valor esperado
da média amostral é igual a média populacional, E(B) = 4, o que defini um estimador ndo enviesado. Logo, o
item | esta errado. :

Em relacdo ao item Il, o valor esperado da menor observacdo da amostra é inferior a média da amostral, E(a)
< WY, o que define um estimador enviesado. Logo, o item |l esta errado. Em relacdo ao item lll, de fato, a
primeira observacdo pode ser considerada uma amostra com tamanho n = 1, ou seja, E(rt) = u. Logo, esse
estimador é ndo enviesado. Logo, o item Il estd certo. :

Gabarito: D.

Eficiéncia
Vimos que, para um estimador ndo tendencioso, o erro quadratico médio é igual a sua variancia:
EQM(Oyr) =V (Onr)

Assim, a variancia de um estimador ndo tendencioso (que é igual ao erro quadratico médio) esta
inversamente relacionada a precisao da estimativa: quanto menor a variancia, maior a preciso.

Por sua vez, a precisdo da estimativa esta diretamente relacionada a eficiéncia do estimador. Ou seja, quanto
menor a variancia do estimador, maior sera sua eficiéncia. Essa comparacdo também pode ser feita para
estimadores com o mesmo viés.
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Dizemos que um estimador é eficiente se for ndo viesado e apresentar a menor variancia possivel. Vale
pontuar que tanto a média amostral quanto a proporg¢dao amostral sdo estimadores eficientes.

Um estimador é dito assintoticamente eficiente quando a sua matriz de variancia-
covariancia assintotica ndo é maior que a de qualquer outro estimador, ou seja, quando a
sua variancia converge mais rapidamente.

Existe um limite inferior para a variancia de um estimador ndo tendencioso, chamado
limite de Cramér-Rao, calculado a partir da funcdo log-verossimilhanca da amostra.
Nenhum estimador ndo tendencioso terd uma variancia inferior a esse limite.

Quando um estimador ndo tendencioso apresenta variancia igual ao limite de Cramér-Rao,
entdo podemos concluir que tal estimador é eficiente, pois apresenta a menor variancia
possivel.

Por exemplo, para uma populacdo com distribuicdo normal, o limite de Cramér-Rao para
2
. ~ . s g . , O s . “n .
estimadores ndo tendenciosos da média populacional é — que é justamente a variancia

da média amostral, X. Por se tratar de um estimador n3o tendencioso com a menor
variancia possivel, concluimos que tal estimador é eficiente.

No entanto, nem sempre o limite de Cramér-Rao pode ser atingido por um estimador nao
tendencioso.

Por exemplo, para uma populacdo com distribuicdo normal, o limite de Cramér-Rao para

. A . . , 2.0% , ~ , . ~ .
estimadores da variancia populacional é —— porém ndo ha estimador ndo tendencioso

com essa variancia - todos apresentam variancia maior que esse limite.

Em outras palavras, a variancia de um estimador eficiente, isto é, de um estimador nao
tendencioso com a menor variancia possivel, nao sera necessariamente igual ao limite de
Cramér-Rao.
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PRATICAR!

(CESPE/2019 TJ-AM) Com relacdo aos parametros estatisticos e suas estimativas, julgue o item que se
:segue. :

: Entre dois estimadores, A e B, com consisténcia, viés e demais caracteristicas iguais, o estimador mais util é :
:aquele que possui menor variancia. :

: Comentarios:

: Para estimadores com todas as demais caracteristicas iguais, o melhor estimador sera aquele com a menor :
:variancia, que estd associada ao erro quadratico médio (EQM). :

Gabarito: Certo

5(2018 — Petrobras) Seja (Y1, Y2, Y3 ) uma amostra aleatdria simples extraida de modo independente de uma
i populagdo com média p e variancia o?, ambas desconhecidas. Considere os dois estimadores da média da :
: populagdo definidos abaixo .

P~ Yi+2Yo43Ys . Yi+1htYs
== &l =T

: Relativamente a esses dois estimadores, conclui-se que:
:a) apenas o primeiro estimador é ndo tendencioso.
:b) apenas o segundo estimador é ndo tendencioso.

:c) os dois estimadores sdo ndo tendenciosos, mas a eficiéncia ndo pode ser determinada sem a estimacao :
: da variancia o? :

:d) os dois estimadores sdo ndo tendenciosos, mas o primeiro é mais eficiente por apresentar a variancia :
:inferior a do segundo estimador. :

:e) os dois estimadores sdo ndo tendenciosos, mas o segundo é mais eficiente por apresentar a variancia :
tinferior a do primeiro estimador. :

: Comentarios:

: O viés do estimador é a esperanca do seu erro:

b(8) = E(e) = E(0 — 0) = E(8) — 6

: O viés do primeiro estimador é:

Y, +2.Y, +3.Y3)
—u

b@) = B (=

Pelas propriedades da esperanca, temos:



1
b(fi) = 2 [E(V) + 2.E(Y;) + 3. E(¥3)] —

ESabendo que a distribuicdo da amostra é igual a distribui¢do da populagdo, temos E(Y;) = E(Y) = pu

[6.u]l —p=u—-—pn=0

O’\Ib—‘

1
b(fy) = - M+2u+3M p=
Logo, o primeiro estimador é nao viesado (alternativa B errada).
ESimiIarmente, o viés do segundo estimador é dado por:

i+Y, +Y3)

b(@) = £ (1

1
b(iiz) = 5 [EM) + E(Y2) + E(Y3)] —

1
b)) =glututul—pn=zBul—n=p-—pn=0

wlv—|l

:Ou seja, o segundo estimador também nao é viesado (alternativa A errada).

: A eficiéncia do estimador ndo viesado é medida por sua variancia. A variancia do primeiro estimador é dada :
: por:

n+2&5+&g>

v =v (2

: Pelas propriedades da variancia, aplicavel a variaveis independentes, temos:

! — V(Y1) +4.V(Y,) + 9.V (Y3)]

1
V(i) = [V(Y1) + 22, V(Yy) + 32, V(Y3)] = 36

ESabendo que a distribuigdo da amostra é igual a distribuigdo da populagdo, temos V(Y;) = V(Y) = o2:

1 7
—[14.0%] = — 2

—[0? +4.02+9.0%] = 36 8°

1
V(ay) = 36

: Similarmente, a variancia do segundo estimador é dada por:

- ,+Y,+Y1; 1 1
V() =V () = S V) + V) + V()] = 5 VIR + V() + V()]
TN 1 2 2 2 1 2 3 2 6 2
V(M2)=5[0' +0 +a]=5[3.0]=50 =15°

:Como a variancia do segundo estimador é menor que a varidncia do primeiro estimador, concluimos que o :
§segundo estimador é mais eficiente.

Gabarlto E



Consisténcia

Para um estimador consistente 6, as suas estimativas convergem para o parametro populacional 8 com o
aumento do tamanho amostral.

Matematicamente, a definicdo de consisténcia é:
lim P(|0; — 0] >¢) =0
para algum valor € > 0 pequeno.

Ou seja, quando o tamanho da amostra n tende a infinito, a probabilidade de um estimador
consistente 8, diferir do parametro verdadeiro 8 (em mais do que €) é nula.

O estimador 8 serd consistente se a sua esperanca E(é) tende ao parametro populacional 8 e sua variancia
V(@) tende a zero, quando o tamanho da amostra n tende ao infinito:

lim E(8) = 6
lim V(8) = 0

Todos os estimadores que mencionamos anteriormente (média amostral X, propor¢do amostral p e variancia
amostral s2) sdo consistentes.

2(Xi—-X)
n

2
Ademais, a estimativa tendenciosa para a variancia amostral s? = também é consistente.

Podemos deduzir se essas duas caracteristicas estdo presentes ou ndo, a partir da formula do Erro
Quadratico Médio do estimador:

EQM(8) = v(8) + [b(8)]"
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Vamos considerar o mesmo exemplo dado na prova da FGV/2017 (IBGE), em que a primeira expressdo
corresponde a variancia do estimador, V(?I) e a segunda expressdao ao quadrado do viés do estimador,

[6(82)]"

2 2

pou(6) ==+ ()

Podemos deduzir que o viés é:

Apesar de ndo ser nulo, na sua expressao, consta uma divisdo por n. Por isso, conforme n aumenta, o viés
diminui. No limite, quando n tende a infinito, o viés é igual a zero, portanto, pode-se dizer que o estimador
¢é assintoticamente n3o tendencioso.

E a variancia é:

~ 3.02
G == o

Nessa expressdo, também consta uma divisdo por n. Logo, quando n tende a infinito, a sua variancia é igual
a zero e o estimador é assintoticamente eficiente.

Como o estimador apresenta as duas caracteristicas, podemos concluir que é consistente.

a

FIQUE

ATENTO!

Se o estimador apresentar as duas propriedades assintdticas, entdo podemos concluir que
é consistente.

Porém, se o estimador nao apresentar essas propriedades assintéticas, ndao podemos
concluir que o estimador é inconsistente.

Em outras palavras, um estimador pode ser assintoticamente tendencioso e/ou
assintoticamente ineficiente e, ainda assim, ser consistente.

Ou seja, essas propriedades sdo condicdes suficientes, que nos permitem concluir que o
estimador é consistente; porém, nao s3o necessarias para que um estimador seja
consistente.
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(CESPE/2019 — TJ-AM) Com relacdo aos pardmetros estatisticos e suas estimativas, julgue o item que se :
: segue.

: Situacdo hipotética: A e B sdo dois estimadores nao viciados e diferentes utilizados para estimar um mesmo :
: parametro. A variancia de A é menor que a variancia de B. Assertiva: Em relacdo a consisténcia desses :
: estimadores, é correto afirmar que o estimador A é mais consistente que o B. :

: Comentarios:

Um estimador é dito consistente quando a esperanca tende ao estimador e a variancia tende a zero, quando :
a amostra cresce. :

Logo, o fato de a variancia de A ser menor do que a variancia de B ndo nos permite afirmar que A é mais :
consistente que B. :

Gabarito: Errado

(FGV/2019 — DPE-RJ — Adaptada) Sobre as principais propriedades dos estimadores pontuais, para pequenas
e grandes amostras, julgue os itens a seguir. :

i 1—-Se lim EQM(8) = 4+, entdo lim P(|6 — 0| <) = 0.

: n—-oo n—oo

Il — Um estimador que seja assintoticamente tendencioso ndo podera ser consistente.
Comentarios:

: Esses 2 itens trabalham com o fato de que as propriedades assintdticas sdo condicGes suficientes, porém :
: ndo necessarias para a consisténcia do estimador.

O item | descreve um estimador cujo erro quadratico médio (EQM) cresce com o aumento do tamanho :
amostral n.

. A L A ~ AN\12 ~ L
Como o EQM ¢é a soma da variancia com o quadrado do viés, EQM(H) = V(G) + [b(@)] , entdo ou o viés :
cresce com o aumento de n (tendencioso, mesmo em termos assintdticos) ou a variancia cresce com o :
aumento de n (ndo é assintoticamente eficiente), ou ambos.

Portanto, ndo podemos concluir que o estimador é consistente, pois ele ndo segue uma ou ambas as :
propriedades assintdticas. :

Por outro lado, também ndo podemos concluir que o estimador é inconsistente, pois é possivel que um :
estimador ndo siga as propriedades assintdticas, mas ainda assim seja consistente. :

Ou seja, ndo podemos afirmar que lim P(|§ - 9| < e) # 0. Por isso, o item | esta errado.

n—-oo

Similarmente, em relagdo ao item I, um estimador pode ser consistente, ainda que seja assintoticamente :
tendencioso.

Resposta: Ambos os itens errados.
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ESQUEMATIZANDO

Estatistica Suficiente: Captura todas as informagdes disponiveis na amostra para estimar
o parametro populacional

Estimador Nao Viesado (ENV), ou Nao Viciado, ou Nao Tendencioso: Esperanga do
estimador igual ao parametro; Esperancga do erro igual a zero:

E()=6 & E(e)=0

Y(Xi-X)? . = A o .
s2 = % é tendencioso; X, P e s? s3o ndo tendenciosos

Estimador Eficiente: apresenta a menor variancia V(@) possivel.
X e P sdo eficientes
Estimador Consistente: estimativas convergem para parametro populacional se:

lim E(9) = 6, lim v(d) =0

n—oo

Todos os estimadores que estudamos sao consistentes.

Métodos de Estimagao

Para obtermos bons estimadores, de acordo com os critérios que vimos, utilizamos métodos de estimacao.
Estudaremos agora alguns desses métodos.

Método dos Momentos

0O Método dos Momentos se baseia nos momentos tedricos e amostrais das varidveis aleatdrias. O k-ésimo
momento tedrico da varidvel X, denotado por , é:

we = E(X*)

Se a varidvel for discreta, temos:

ue = E(X*) = Zxk.P(X = x)
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Em particular, o primeiro momento tedrico é igual a esperanca da variavel:

u = EX) =Zx.P(X=x)

Se a varidvel for continua, substituimos o somatdrio pela integral e a fungdo de probabilidade P(X = x) pela
fungdo densidade de probabilidade f(x).

Pontue-se que é possivel que distribuicdes distintas apresentem os mesmos momentos tedricos.

Os momentos amostrais sdo calculados de maneira andloga. O k-ésimo momento amostral, denotado por
my, € a soma dos valores observados elevados a k, dividida pelo tamanho da amostra, n:

1 n
i=

Em particular, o primeiro momento amostral (k = 1) consiste na média amostral:

n

i=1Xi S
m, =2=10 g

n

E o segundo momento amostral (k = 2) corresponde ao que definimos por X2:

n XZ
=11 v
m, =—— = X?
n

Para o exemplo das alturas, em que os n = 5 valores da amostra observada foram {1,65; 1,75; 1,8; 1,85;
1,95}, o primeiro momento amostral é igual a média amostral:
XX B 1,65+1,75+ 1,8+ 1,85+ 1,95 _ 9

=)?= —=1,8
e n 5 5

E o segundo momento amostral é a soma dos valores observados, elevados ao quadrado, divididos pelo
tamanho da amostra:
_ X2 _ (1,65)% + (1,75)% + (1,8)% + (1,85)? + (1,95)2 _ 16,25

=X2 = = 3,25
e n 5 5

Para calcular os estimadores pelo método dos momentos (EMM), que podemos denotar por 8,
igualamos os momentos tedricos (ou populacionais) aos momentos amostrais:

U = My

Essa equacdo é feita para todos os parametros do modelo. Por exemplo, se houver 2 parametros, fazemos:
Hy =my
Uy =M,

Em seguida, resolvemos o sistema de equagodes.
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Por exemplo, o EMM para a média populacional, fi,,,, é dado por:

fiyy =my =——=X

Ou seja, a média amostral é o estimador para a média populacional, obtido pelo método
dos momentos.

Agora, vamos calcular o estimador de 8 pelo método dos momentos para uma variavel uniforme no intervalo
(0,0). Nesse caso, temos um Unico parametro, entdo basta calcularmos o primeiro momento:

po=my =X

Para uma varidvel uniforme em um intervalo (a, b), a média populacional (ou esperanca da varidvel)
corresponde a média aritmética entre os extremos do intervalo:

_atb_0+6 6
M= =72 T2°

Assim, o estimador para o parametro 8 obtido pelo método dos momentos é o dobro da média amostral.

Em relagdo a variancia, sabemos que 2 = E(X?) — [E(X)]?, ou seja, a variancia populacional é a diferenga
entre o segundo momento e o quadrado do primeiro momento. Logo, o EMM para a variancia é a diferenga
entre o segundo momento amostral e o quadrado do primeiro momento amostral (o qual corresponde a
média amostral):

n y2
~2 2 _ &i=14 T2
Oy =my — (M) =——-X
n
Com manipulag¢Ges algébricas, obtemos como resultado:
(X = B)?
A2 _ 4Li=1\"
Oum =

n

Entretanto, sabemos que esse estimador é tendencioso, ou seja, a esperanca desse estimador é diferente
do parametro populacional estimado (variancia):

E(6%y) # o
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Portanto, nem sempre o estimador obtido pelo método dos momentos apresenta boas propriedades.
Inclusive, tais estimadores podem nao ser suficientes.

Também é possivel ter mais de um estimador para um mesmo parametro populacional. Para a distribuicdo
de Poisson, por exemplo, temos E(X) = V(X) = A. Assim, o parametro A pode ser estimado tanto por iy,
quanto por 84,,, o que pode resultar em estimativas bem diferentes.

-

Ademais, é possivel obter valores negativos para os parametros de uma distribuicdo
binomial, segundo método dos momentos. Vejamos porqué:

Como ha 2 parametros para essa distribuicdo, precisamos de 2 momentos. O primeiro
momento populacional é:

p =EX) =np

Sabemos que a variancia da binomial é V(X) = n.p.(1 — p). Lembrando que a varidncia
pode ser calculada como V(X) = E(X?) — [E(X)]?, podemos calcular E(X?) para essa
distribuicdo:

pp = E(X?) =V(X) + [EX)]? = n.p.(1 —p) + [n.p]?

U, = E=n.p.(1 —p)+n?p?

Para calcular os EEMs, fazemos m; = u; e m, = u,. Sabendo que o primeiro momento
amostral é m; = X, entdo precisamos resolver o seguinte sistema de equagdes, supondo
gue foi obtida uma amostra de tamanho k:

X=np
1
(E) 21 X" =n.p.(1—p) +n’.p?

Resolvendo esse sistema (que ndao vamos demonstrar aqui), obtemos as seguintes
expressdes para os estimadores dos parametros n e p:

)?2
(7). xi-®)?

S| >

n=

>
Il

Como o valor de (%) K ((X; —X)? pode superar o valor de X, é possivel que o

denominador de 7l seja negativo e assim obtermos tanto 7 quanto p negativos, o que é
mais um indicativo de que o método dos momentos pode nado resultar em bons
estimadores.
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PRATICAR!

(2017 — TRF-22 Regido) Considerando o método de estimacdo conhecido como Método dos Momentos, :
: assinale a afirmativa INCORRETA.

a) Estimadores obtidos utilizando o k-ésimo momento ndo tém propriedades assintoticas para k = 2.
b) O k-ésimo momento amostral é dado por m;, = % ?=1Xl-k e o k-ésimo momento populacional é dado por
E(X¥).

c) Duas varidveis aleatérias com func¢des densidade de probabilidade distintas podem ter os mesmos :
momentos. :

d) Este método iguala os momentos da populagdo aos momentos amostrais. Os estimadores sdo obtidos :
resolvendo a equacgdo ou o sistema de equagdes resultante.

Comentarios:

n 2
i=1Xi

Em relagdo a alternativa A, sabemos que para k =2, temos m, = -

Conforme n aumenta, esse valor tende a zero. Logo, ndo podemos dizer que tais estimadores ndo possuem
propriedades assintdticas. Assim, a alternativa A estd INCORRETA.

s » . . s , 1 :
Em relacdo a alternativa B, vimos que o k-ésimo momento amostral é, de fato, m;, = - ilel!‘ e que o k-
ésimo momento populacional é u;, = E(X*). Logo, a alternativa B estd CORRETA.

Em relacdo a alternativa C, de fato, distribuicdes distintas podem apresentar momentos iguais, logo a :
alternativa C esta CORRETA.

Em relacdo a alternativa D, vimos que o método dos momentos iguala os momentos amostrais aos :
momentos tedricos (ou populacionais) aos momentos amostrais.

Em seguida, os estimadores sdo encontrados resolvendo a equacdo (quando houver apenas 1 parametro) ou :
o sistema de equacdes (quando houver mais parametros).

Gabarito: A

(2007 — TCE/RO — Adaptada) Seja (y1, Y2, Y3, Ya) uma amostra aleatéria independente e identicamente
distribuida, de tamanho n =4, extraida de uma populacdo cuja caracteristica estudada possui distribuicdo de
probabilidade

1 0<y<®6
fy(y,9)={ /o —y‘,.}
0, caso contrario
: Se a amostra selecionada foi (6, 2, 14, 8), a estimativa do parametro 6 pelo método dos momentos é:

Ea)7
i b)7,5



i )14
 d) 15
e) 14,5
Comentarios:
Para calcular o estimador pelo método dos momentos, igualamos os momentos amostrais aos momentos
: tedricos:
K = My
Ou seja, o primeiro momento tedrico, que é a esperanga (ou média populacional), é igual a média amostral:
ZX_6+2+14+8_30

X = — =75
n 4 4

Pela funcdo densidade fornecida, podemos identificar que se trata de uma distribuicdo uniforme, no
: intervalo (0, 6).

: A média dessa distribuicdo é a média aritmética dos extremos:

_0+0 6
=773

: Igualando os dois momentos, temos:

Resposta: D

Método da Maxima Verossimilhancga

Para estimar o parametro populacional desejado, o método da maxima verossimilhanga busca a estimativa
para a qual a probabilidade de se obter os valores observados é a maior possivel.

Em outras palavras, suponha que as observagdes tenham sido X, X5, ..., X,,.

Nesse caso, considerando o estimador de maxima verossimilnanca, a probabilidade associada as
observagdes X1, X5, ..., X;, € maior do que se considerdassemos qualquer outro estimador.

Esse método terda uma funcado diferente, de acordo com a distribuicdo da populacao.
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O estimador de maxima verossimilhanca para um parametro 6 é calculado a partir de uma
funcdo de probabilidade conhecida dependente desse parametro f(6,x) e das
observagGes de uma amostra aleatdria x4, x5, ..., X,.

Para calcular o estimador, precisamos da funcao de maxima verossimilhanca L(6, x;),
dada pelo produto da fun¢dao de probabilidade, aplicada para cada resultado da amostra
(funcdo densidade conjunta):

L(8,x) = [1iz1 £ (6, %) = f(6,%1) X f(8,%2) X ... X f(6,xn)

O estimador de maxima verossimilhanca sera aquele que maximizar essa func¢do. Para isso,
derivamos a fungao e a igualamos a zero.

Normalmente, é mais simples trabalhar com o logaritmo natural da funcdo In L(6, x;).

Para uma variavel com distribuicdo normal, o estimador de maxima verossimilhanca (EMV) para a média é:

n
X
o~ =141
=—=X
Umy n
a
TOME

NOTA!

Ou seja, para uma populagdo com distribuigdo normal, a média amostral é o estimador de
maxima verossimilhanca (EMV) para a média populacional.

E o EMV para a variancia, para uma distribuicdo normal, é:

- (X — X)?
Opmy

I

n

Esse é o mesmo estimador obtido pelo método dos momentos, que é tendencioso:

E(6%,) # o2



Victor
Destacar

Victor
Destacar

Victor
Destacar


Para uma varidvel aleatéria com distribuicdo de Poisson, o estimador de maxima verossimilhanca (EMV)
também é a média amostral:

Por exemplo, vamos supor que queiramos estimar o numero médio (1) de pessoas que chegam em um ponto
de 6nibus por hora, considerando que essa varidvel segue distribuicdo de Poisson.

Para isso, vamos considerar uma amostra de n = 6 horas (ou seja, vamos ficar 6 horas observando o ponto
de 6nibus e anotando o numero de pessoas que chegam a cada hora).

Vamos supor que os valores observados sejam os seguintes:
{10, 12, 15, 10, 8, 5}

Para estimar o parametro A pelo método de maxima verossimilhanca, calculamos a média amostral:

. _ Yr.X, 10412+15+104+845 60
AMV=AX= n = 6 =?=10

Ou seja, a estimativa é que chegam, em média, 10 pessoas por hora nesse ponto de 6nibus.

. s . e e R 1 ~
Para uma variavel com distribuicdo exponencial, a média é o inverso do parametro: E(X) = > entao a

estimativa de maxima verossimilhanca para o parametro A é o inverso da média amostral:

|| =

Ay =
Por exemplo, vamos supor que queiramos estimar o tempo de duracdao de uma lampada incandescente.
Foram selecionadas n = 5 [ampadas com as seguintes duragdes (em horas):
{50, 52, 46, 48, 54}
A média dessa amostra é:

m.X; 50+52+46+48+54 250

X =
n 5 5

=50
Logo, o parametro estimado dessa distribuicdo, pelo método da maxima verossimilhanga, é:

1
= <0 = 0,02 por hora

ST

Ay =



Vamos efetivamente calcular o estimador de maxima verossimilhanga para a distribui¢do
exponencial. A f.d.p. dessa varidvel é:

f(6,x) =6.e70*

A fungdo de maxima verossimilhanga L(6,x;) corresponde ao produto da fungdo de
probabilidade, aplicada para cada resultado da amostra:

L(6,x)) =TIiz1 f (6, %) = f(6,x1) X f(6,%2) X ... X f (6, %)

L(B,x) =1L, 6.e7 9

Para simplificar, vamos trabalhar com o logaritmo natural dessa funcao:

InL(0,x;) = In([TL, 6.e~9%)

O logaritmo do produto corresponde a soma dos logaritmos (Ina.b = Ina + In b):

InL(8,x) =%, In(0.e70%) =Y In@ + X, Ine 0%

Sabendo que o logaritmo da poténcia é igual ao produto do logaritmo (Ina* = x.lna) e
quelne =1, temos:

InL(6,x;) =X In0+YL,—0x; =nlnf—-0)" x;

Agora, igualamos a derivada dessa funcdo a zero (equagao de log-verossimilhanca):

dln L(B,xi) _

06 0

. (1
Pontue-se que a derivada de lnx é o

1 n
nx5—2i=1xi =0

n_\yn
9 i=1%Xi

g =—" —

1
n —
i=1Xi X

Que é justamente o estimador da distribuicdo exponencial!




Para uma variavel aleatéria com distribuigcdo de Bernoulli, o estimador de maxima verossimilhanga para p é
a proporc¢ao amostral (que segue a mesma definicdo de média amostral):

n
: i=1 Xj

PMV=T=I7

Por exemplo, vamos supor que queiramos estimar a propor¢do p de pegas defeituosas produzidas por uma
fabrica. Para isso, foi selecionada uma amostra de n = 10 elementos que apresentou o seguinte resultado
(em que 1 representa o defeito e O representa a pega boa):

{OI OI 1I OI OI OI OI 1I ol o}

O estimador de maxima verossimilhanca para essa distribui¢cdo é a proporcao amostral:

—~

X 04+40+14+0+04+40+0+14+04+0 2
Puv = = =

n 10 =10~ %2

Para uma distribuicdo geométrica, que representa o nimero de tentativas até o primeiro sucesso, a média

é o inverso da probabilidade de sucesso: E(X) = %, entdo o estimador de maxima verossimilhanca para a
proporg¢do p é o inverso da média amostral:

e n 1

Puav = XX

Vamos supor que 5 pessoas estejam jogando para ver quem consegue primeiro a face CARA lancando uma
mesma moeda viciada (ndo equilibrada). Os resultados foram os seguintes:

{3,4,2,5,1}
A média amostral desses resultados é:

Yie X 3+4+24+5+1 15
= =—=3
n 5 5

Logo, a probabilidade de obter a face CARA nessa moeda, estimada pelo método da maxima verossimilhanga,

X =

é:

|| =

Pmv =

Para uma variavel uniforme no intervalo (0, 0), o estimador de maxima verossimilhanca para 6 é o maior
valor observado na amostra. (Observe como os estimadores sao diferentes pelos diferentes métodos:
lembra que o estimador de 6 nesse caso pelo método dos momentos é o dobro da média amostral?)
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PRATICAR!

(CESPE/2015 — Telebras) Considerando que os principais métodos para a estimac3o pontual s30 o método
: dos momentos e o da maxima verossimilhanga, julgue o item a seguir.

: Para a distribuicdo normal, o método dos momentos e o da maxima verossimilhanca fornecem os mesmos :
: estimadores aos parametros p e o. :
: Comentarios:

: Para uma distribuicdo normal, o estimador da média, segundo o método da maxima verossimilhanca, é a :
: média amostral, X, o mesmo estimador obtido pelo método dos momentos. E o estimador da variancia, :
: , .. . ~ , = 1 _ :
: segundo o método da maxima verossimilhanca, para uma popula¢do normal, é o2 = ;Z?ﬂ(xi — %)%, que :
: também é o mesmo estimador obtido pelo método dos momentos.

Gabarito: Certo.

(CESPE/2015 — Telebras) Considerando que os principais métodos para a estimagdo pontual sdo o método
: dos momentos e o da maxima verossimilhanga, julgue o item a seguir. :

: O estimador da mdaxima verossimilhanca para a variancia da distribuicdo normal é expresso por
P11
: 2 —

i o

= ;2?:1(351' — %)? e este estimador é n3o viciado.

: Comentarios:

: . —5 1 N2 . . - cn :
: De fato, o estimador g2 = - =1 (x; — x)2 é o estimador de maxima verossimilhanga para a variancia de :
: uma populagdo com distribuicdo normal, porém esse estimador é viciado.

Gabarito: Errado.

(CESPE/2016 — TCE/PA) Uma amostra aleatdria com n = 16 observag¢des independentes e identicamente
: distribuidas (IID) foi obtida a partir de uma populagdo infinita, com média e desvio padrao desconhecidos e :
: distribuicdo normal. Tendo essa informagdo como referéncia inicial, julgue o seguinte item.
Caso, em uma amostra aleatéria de tamanho n = 4, os valores amostrados sejam A ={2, 3, 0, 1}, a estimativa
: (. . A . L 5 :
: de maxima verossimilhanga para a variancia populacional sera igual a 3
Comentarios:
A estimativa de maxima verossimilhanca para a variancia de uma populagdo normal, é:
72
7= i-1(Xi — X)
My =T

Para calculd-la, precisamos primeiramente da média amostral, X:

X, 24+34+0+1 6
Z l= =—=1’5

X =
n 4 4




A estimativa é, portanto:

- (2- 1,52+ (3 -15%+(0-15)*+(1—-1,5)? _ (0,5)% + (1,5)% + (—1,5)% + (—0,5)?

2

Omy = 4 4
> 0,25+ 2,25+2,25+ 0,25 5
v = 4 ~ 2

: Observe que a questdo exigiu conhecimento justamente da diferenca entre o estimador de maxima :
: verossimilhanca e o estimador que utilizamos (ndo tendencioso).

Gabarito: Errado.

(FGV/2022 — SEFAZ/ES) Uma amostra aleatdria simples de tamanho 4 de uma popula¢cdo normalmente
: distribuida forneceu os seguintes dados:

2,1 3,8 31 3,0

As estimativas de maxima verossimilhanga da média e da variancia populacionais sdao respectivamente
a)3,0e0,486

b) 2,8 € 0,386

c) 2,8 e 0,535

 d)3,00,544

e) 3,0e 0,365

Comentarios:

Essa questdo trabalha com o método de maxima verossimilhanca para estimar a média e a variancia de uma
: populagdo com distribui¢do normal.

Em relacdo a média, temos a média amostral:

xx 21+438+31+30 12
o z =73

: Ja a estimativa de mdxima verossimilhanga para a variancia é o estimador tendencioso, em que dividimos a :
: soma dos quadrados dos desvios por n, e ndo porn — 1: :

5 Y (x; — X)?
Omv _T

X =

i Para calcular o numerador, vamos construir uma tabela com os desvios:

x; 21 | 38 | 31 |30
x; — X 09| 08 |01 0
(x; —X)? | 081|064 |001] 0

E o numerador é a soma dos valores da ultima linha:
Z(xi -X)?=081+0,64+0,01+0=1,46

: Para calcular o estimador da variancia, dividimos esse resultado por n = 4:



z 140 0,365
: Oy =~ =
: Gabarito: E
} (FGV/2017 - IBGE) Seja X uma variavel aleatdria com fungdo de probabilidade dada por P(X = x) = p. (1 —

i p)* 1 parax=1,2,3,.., onde p é um pardmetro desconhecido. Dispondo de uma amostra de tamanho n, :
: X1, X2, X3,...., Xn, 0 €stimador de Mdxima Verossimilhanca de p é: :

Ea)ﬁ=2xi
bIp =5
st

fe)p=YIx
Comentarios:

: Podemos observar que a fun¢do de probabilidade fornecida na questdo é de uma variavel com distribuicdo :
: geométrica. Para essa varidvel, o estimador de maxima verossimilhanca é o inverso da média amostral: :

Gabarito: D

(CESPE/2013 — MPU) Suponha que xi, ..., Xn S€ja uma sequéncia de copias independentes retiradas de uma

—axz

distribuicdo com fungdo densidade de probabilidade f(x) =a.x.e 2 , em que x 20 e a > 0 é seu
: parametro. Com base nessas informagdes, julgue o item a seguir.

Supondo que (x, ..., X5) = (3, 4, 4, 6, 6), a estimativa de maxima verossimilhanca do pardmetro « é inferior a
: 1/10. :

: Comentarios:

O primeiro passo é calcular a fungdo de maxima verossimilhanga L(a, x;), dada pelo produto da fun¢do de
: probabilidade, aplicada para cada resultado da amostra: :

L@x) = | [F@x) = flax) x @) x x f(@ )

: Para 0 nosso caso, temos:
n
—ax?
L(a,x;) = | |a.xi.e 2
i=1

: Agora, calculamos o logaritmo natural dessa funcdo:



n
—ax?
InL(a, x;) =ln<l_[a.xl-.e 2 )

: i=1
O logaritmo do produto corresponde a soma dos logaritmos (Ina.b = Ina + In b):

n n 2

—ax? - = —ax
lnL(a,xJzZln a.xg.e 2 =Zlna+21nxi+ Ine 2
' i=1 i=1 i

i=1 =1

Sabendo que o logaritmo da poténcia é igual ao produto do logaritmo (Ina* = x.Ina) equelne = 1:

n n n 2 n
—ax a
lnL(a,xi)=ZIna+Zlnxi+z > lne=n.lna+21nxi—§
i=1 i=1 i=1 i=1 i

n

x2
)

: E aderivada dessa fun¢do em relagao a « é:

d1nL(a,x;) 1 1 zn: , Xl x?
———————=nX——=X ) x?=——
oa a 2 a 2

i=1

Agora, essa fungdo a zero (equacdo de log-verossimilhanga):

n 2
no N X
—— =0
a 2
n 3, x?
a 2
2n
o =
n_ 2
i=1X

: Encontramos o estimador de maxima verossimilhanca para a. Substituindo os resultados da amostra descrita :
: no enunciado, temos: :

_ 2x%5 B 10 _ 10
324424 424624+462 94+416+16+36+36 113

a

Que é inferior a 1/10.

Gabarito: Certo.

Método de Minimos Quadrados

O Método de Minimos Quadrados busca a estimativa Q’M\Q gue resulta no menor valor para o quadrado das
diferencas entre os valores observados X; e o estimador 9’,\,,\0:

n
Min Z(Xi — o)
i=1
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Ou seja, o método busca minimizar o erro quadratico total da amostra. Assim, 9’,;(2 é chamado de Estimador
de Minimos Quadrados (EMQ) para o parametro populacional 8. Esse método é utilizado quando nao se
conhece o tipo de distribuicdo da variavel.

&)

v TOME
NOTA!

O estimador de minimos quadrados para a média populacional, iy, é igual a média
amostral:

Hmo = X

Similarmente, o estimador de minimos quadrados para a proporgdo populacional, pyo, é
a propor¢ao amostral:

—~

Pmo =p

fe!ﬂe‘ 3
'; RESUMINDO

A média amostral é o estimador para a média populacional obtido pelos métodos dos
momentos (EMM) e dos minimos quadrados (EMQ). Se a populacdo tiver distribuicdo
normal, a média amostral também é o estimador obtido pelo método da maxima
verossimilhanca (EMV).

A proporcao amostral é o estimador para a proporc¢do populacional obtido pelos métodos
dos minimos quadrados (EMQ) e da maxima verossimilhanga (EMV).

O estimador para a variancia obtido pelos métodos dos momentos (EMM) e da maxima
verossimilhanca (EMV) é tendencioso.
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ESTIMACAO INTERVALAR

Apds obtermos uma estimativa para o parametro populacional desejado (estimagao pontual), calculamos o
intervalo dentro do qual esse parametro deve variar. Ou seja, na estimacgdo intervalar (ou estimacdo por
intervalos), a estimativa deixa de ser um ponto (isto é, um valor Unico) e passa a ser um intervalo. Esse
intervalo, chamado intervalo de confianga, fornece uma nog¢do de precisao da estimativa.

O intervalo de confianga é construido em torno da estimativa pontual 8, indicado da forma (8 — E; § + E)
ou como @ + E. Esse intervalo indica gue o parametro populacional 8 deve estar entre o limite inferior, 6 —

E, e o limite superior 8 + E. O valor E corresponde a metade da amplitude do intervalo, podendo ser
chamado de margem de erro, erro de precisdo, erro maximo.

Como assim o pardmetro “deve” estar no intervalo? E possivel que o pardmetro 6 esteja fora desse intervalo?
Por se tratar de um intervalo construido em torno de uma variavel aleatéria, sim! Em Inferéncia Estatistica,
sempre convivemos com um nivel de duvida. Mas, felizmente, é possivel dimensionar esse nivel de duvida.

Mais precisamente, atribuimos ao intervalo um nivel (ou grau) de confianca 1 — a, indicado em forma
percentual, por exemplo, 95%. A interpretacdo desse nivel é a seguinte: repetindo o procedimento para a
construcdo do intervalo muitas vezes, em (1 — a)% (por exemplo, 95%) dessas vezes, o intervalo construido
incluird o parametro populacional.

Ou seja, o nivel de confianga é uma probabilidade. Porém, ndao se trata de uma probabilidade de o
parametro populacional pertencer ao intervalo, uma vez que o parametro populacional é fixo (embora seja
desconhecido). O nivel de confianca representa a probabilidade de o intervalo, o qual é construido a partir
de variaveis aleatdrias, incluir o parametro populacional.

Quanto maior o nivel de confianca (1 — a), ou seja, quanto maior a certeza necessaria de que o intervalo
calculado inclui o parametro populacional desejado, maior terd que ser o tamanho do intervalo, se
mantivermos todas as demais caracteristicas iguais. Logo, maior sera a margem de erro (isto é, a semi-
amplitude do intervalo).

Se a margem de erro ndo puder aumentar, entdo teremos que aumentar o tamanho da amostra. Ou seja,
para termos uma estimativa mais precisa (com menor margem de erro e/ou com maior nivel de confianca),
teremos que investigar um nimero maior itens. Veremos as férmulas dessas relagdes adiante, mas é
desejavel entender essa légica por tras delas.

E o valor de a? a é chamado de nivel de significancia e corresponde a probabilidade dos valores que nao
estao no intervalo de confianca. Falaremos bastante dele na aula de Teste de Hipdteses.

Nas proximas secoes, veremos como construir o intervalo de confianca para os parametros populacionais
(média, proporcao e variancia), a partir dos respectivos estimadores.
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PRATICAR!

e

(CESPE/2019 TJ/AM) Acerca de métodos usuais de estimacdo intervalar, julgue o item subsecutivo. Um
5 intervalo de confianca de 95% descreve a probabilidade de um pardmetro estar entre dois valores numeéricos :
: na proxima amostra ndo aleatdria a ser coletada.

{ Comentarios:

: Existem alguns erros neste item. A estimacdo, de modo geral, trabalha com amostras aleatdrias ja coletadas. :
: Além disso, ndo se trata de uma probabilidade de o parametro estar entre dois valores, mas sim de os dois :
: valores englobarem o parametro. :

: Gabarito: Errado.

: (CESPE/2019 — TJ/AM) Acerca de métodos usuais de estimacdo intervalar, julgue o item subsecutivo. E :
gpossivel calcular intervalos de confiangca para a estimativa da média de uma distribuicdo normal,
: representativa de uma amostra aleatéria.

: Comentarios:
: De fato, € possivel calcular intervalos de confianca para a média, a partir de uma amostra aleatoéria.

: Gabarito: Certo.

: (FGV/2019 — DPE-RJ — Adaptada) Para a aplicagdo de técnica de estimagdo por intervalos, hd uma série de
: requisitos e recomendacdes. Sobre essas condi¢Ges, julgue os seguintes. :

: | = Aamplitude do intervalo varia positivamente com o grau de confianca e o tamanho da amostra.

: Il — A ideia da técnica é a da construcdo de um intervalo ao qual seja possivel associar uma probabilidade,
: justamente aquela de que o parametro de interesse esteja nele contido.

: 1Il - E inquestiondvel que, antes da sele¢do da amostra, o grau de confianca é a probabilidade de o intervalo
: tedrico conter de fato o verdadeiro valor do parametro de interesse.
: Comentarios:

: Em relacdo ao item |, quanto maior o nivel de confianca, maior serd a amplitude do intervalo; porém, quanto :
: maior o tamanho da amostra, mais precisa sera a estimativa e, portanto, menor sera a amplitude do intervalo :
: (e a margem de erro). Logo, o item | esta errado.

: Em relagdo ao item Il, ndo se trata de uma probabilidade de o pardmetro de interesse (que é fixo) estar :
: contido no intervalo construido, mas sim de o intervalo construido conter o parametro de interesse.

: Em relacdo ao item Ill, o grau de confianga (1 — a), de fato, representa a probabilidade de o intervalo conter :
: 0 parametro de interesse.

: Resposta: Itens | e Il Errados; Item Il Certo.



Intervalo de Confianca para a Média

Para estimarmos a média populacional, utilizamos a média amostral como estimador. Porém, para
construirmos um intervalo de confianca em torno desse estimador, é necessario saber se a variancia
populacional é conhecida ou nao.

Populagdao com Variancia Conhecida

Se a populacio tiver varidncia conhecida o2 e distribuigdo normal (ou se apresentar outra distribuicdo, mas
o tamanho da amostra for suficientemente grande), a média amostral X tera distribuicdo normal.

Sendo assim, vamos considerar a curva normal para construir um intervalo que delimite uma probabilidade
de 1 — a em torno de X. Ou seja, devemos encontrar os valores de X que delimitam uma area sob a curva
normal, correspondentea 1 — a:

=S N

X—FE X X+E

Para encontrar os limites, devemos utilizar a tabela normal padrao. Logo, precisamos utilizar a transformacédo
para a distribuicdo normal padrdo Z (com média O e desvio padrdo igual a 1):

valor procurado — média da distribuicao
zZ= . = p .~
desvio padrao da distribuicao

Aqui, os valores procurados so X + E e X — E; a média da distribuic3o é X e o desvio padr3o é o erro padrio
de X:

EP(X) =

=l

Ou seja, o limite superior do intervalo de confianca, X + E, é calculado como:
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O intervalo de confianca, X + E, é, portanto:

()?—z.\%;)?+z.\%)

Esses limites podem ser chamados de valores criticos.

E qual é o valor de z? Depende do nivel de confianca.

Por exemplo, suponha um nivel de confianca 1 — @ = 95% (normalmente, a prova fornece o valor do nivel
de confianca mesmo, ou seja, o valor de 1 — «).

Para que toda a regido indicada no grafico acima delimite uma area de 1 — a = 95%, entdo a area entre 0
e zdeve sera metade: P(0 < Z < z) = 0,475.

z 005 006 0,07

18 .. 04678 04686 0,4693
1,9 . 04744 [OMTBN 04756
2 .. 04798 04803  0,4808

Pela tabela da normal padrdo, observamos que z = 1,96. Logo, se o nivel de confianga for de 95%, o intervalo
construido sera:

Agora podemos visualizar o raciocinio que construimos no inicio desta se¢do: quanto maior o nivel de
confianga, maior serd o valor de z e, portanto, maior o tamanho do intervalo de confianga (e a margem de
erro), mantendo as demais caracteristicas constantes.

E quanto maior o tamanho da amostra analisada, menor sera o tamanho do intervalo, mantendo as demais
caracteristicas constantes. Além disso, também podemos observar que quanto maior a variabilidade da
populacdo, medida pelo desvio padrdo (o), maior sera o intervalo.

Para exemplificar os cdlculos, vamos supor que uma populagdo com média desconhecida e variancia igual
0% =9 (portanto, o desvio padrio é o = Vo2 =+/9 = 3). Para estimar a média, foi considerada uma
populacdo de 36 individuos. Nesse caso, a margem de erro, a um nivel de 1 — a = 95% de confianga (em
que z = 1,96), é dada por:
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Supondo que a média amostral calculada foi X = 10, o intervalo de confianca é dado por:
X+E=10+0,98=10,98
X—E=10-0,98=9,02
(9,02;10,98)

Note que a probabilidade associada aos valores ndo incluidos no intervalo de confianca é complementar, ou
seja, igual a a. Por se tratar de uma distribuicdo simétrica, a probabilidade associada aos valores superiores
ao intervalo é a/z e aos valores inferiores é também “/2:

Assim, é comum utilizar a notacao Zay, para indicar o limite do intervalo na distribuicdo normal padrdo (no

nosso exemplo, temos Zay, = 1,96).

Tamanho Amostral

Pode ser que a quest3o forneca, além do nivel de confianca (1 — a), o valor do erro méaximo, ou seja, o valor
de E, e indague a respeito do tamanho necessario da amostra n. Para isso, podemos utilizar a mesma
formula do erro que vimos ha pouco:

o
Vn
Lembre-se que o valor de z é obtido a partir do nivel de confianca desejado e que o erro corresponde a
metade da amplitude do intervalo de confianca.

E=2z

Reorganizando essa formula, temos:

n=(=3)

Podemos observar que, quanto maior o nivel de confianga desejado (z), maior sera o tamanho amostral; e
guanto maior o erro maximo (E), menor serd o tamanho amostral.
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Para o exemplo que vimos anteriormente, em que obtivemos uma margem de erro de E = 0,98, com uma
amostra de n = 36. Vamos supor que o erro maximo toleravel seja a metade, ou seja, E = 0,49.
Considerando que os demais valores permaneceram constantes, ou seja, z = 1,96 e ¢ = 3, o tamanho da
nova amostra n,, necessario para obter a margem de erro desejada é:

o\2 3 \2 5 5
n, = (z.7) =(, )=4><3 = (12)% = 144
2= (23 oa5) = @4x3)?=012)
Note que o tamanho da amostra quadruplicou para que a margem de erro fosse reduzida a metade,
mantendo o mesmo nivel de confianca, para a mesma populacdo (portanto, o mesmo desvio padrdo).

Na verdade, poderiamos saber que isso aconteceria, sem conhecer os dados do problema. Vejamos: a
amostra inicial é dada por:

m=(22)

E a nova amostra necessaria para que o erro se reduza a metade é:

n2=<Z.Ei/2) =(z.%.2) =4.(z.%) =4.n

Pontue-se que tais férmulas pressupdem uma populagao infinita ou amostras extraidas com reposi¢ao. Caso
a populacdo seja finita e as amostras extraidas sem reposi¢dao, entdo serd necessario aplicar o fator de
correcdo para populacao finita.

,N
Para isso, devemos multiplicar a férmula do erro pelo fator , 0 que influencia no tamanho da amostra:

(CESPE 2020/TJ-PA) Uma equipe de engenheiros da qualidade, com vistas a estimar vida util de determlnado
equipamento, utilizou uma amostra contendo 225 unidades e obteve uma média de 1.200 horas de duracao,
: com desvio padrdo de 150 horas.

: Considerando-se, para um nivel de confianga de 95%, z = 1,96, é correto afirmar que a verdadeira duragado :
: média do equipamento, em horas, estard em um intervalo entre :
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: a) 1.190,00 e 1.210,00.

b) 1.185,20 e 1.214,80.

c) 1.177,50 e 1.222,50.

d) 1.180,40 e 1.219,60.

e) 1.174,20 e 1.225,80.

Comentarios:

Vamos listar as informagdes do enunciado:

Média amostral - X = 1.200

Escore associado ao nivel de confianca - z = 1,96
Desvio padrao = o = 150

Tamanho da amostra - n = 225 :
Agora, podemos apenas aplicar na férmula do intervalo de confianca para a média (como a questdo ja

: forneceu o valor de 3, ndo precisamos consultar a tabela para obté-lo, a partir do nivel de confianca):

_ o
Xtz X—

Vn
150

V225

1200 + 1,96 x 150
—_— ) 15

1200 + 1,96 x 10

: 1200 + 19,6

Logo, o intervalo é (1200 — 19,6 = 1180,4; 1200 + 19,6 = 1219,6)
Gabarito: D.

1200 £+ 1,96 X

(FGV/2022 - TIDFT) Uma grande amostra foi selecionada para estimar o tempo médio de tramitacdo de um
tipo particular de acdo em uma comarca. Essa amostra demonstrou que o intervalo bilateral de 95% de
: confianga para o tempo médio de tramitacdo estava entre 8 e 10 anos. :

: Com o objetivo de aumentar a precisdo dessa estimativa, um estatistico resolveu diminuir a confianca para :
: 85%. O novo intervalo de confiancga passou a ser, aproximadamente, igual a: :

:a)9+0,26
' b)9+0,34
éc)9i0,72
éd)9-|_—0,88
ée)9-l_—1,44

Nessa prova, foi fornecida a tabela normal padrao da forma P(Z > Z,), parcialmente replicada a seguir.



7 | Segunda decimal de Zo

| 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09
1,00| 0,1587 0,1562 0,1539 0,1515 0,1492 0,1469 0,1446 0,1423 0,1401 0,1379

1,10 | 0,1357 0,1335 0,1314 0,1292 0,1271 0,1251 0,1230 0,1210 0,1190 0,1170
1,20 | 0,1151 0,1131 0,1112 0,1093 0,1075 0,1056 0,1038 0,1020 0,1003 0,0985
1,30 | 0,098 0,0951 0,0934 0,0918 0,0901 0,0885 0,0869 0,0853 0,0838 0,0823
1,40 | 0,0808 0,0793 0,0778 0,0764 0,0749 0,0735 0,0721 0,0708 0,0694 0,0681
1,50 | 0,0668 0,0655 0,0643 0,0630 0,0618 0,0606 0,0594 0,0582 0,0571 0,0559
1,60 | 0,0548 0,0537 0,0526 0,0516 0,0505 0,0495 0,0485 0,0475 0,0465 0,0455
1,70 | 0,0446 0,0436 0,0427 0,0418 0,0409 0,0401 0,0392 0,0384 0,0375 0,0367
1,80 | 0,0359 0,0351 0,0344 0,0336 0,0329 0,0322 0,0314 0,0307 0,0301 0,0294
1,90 | 0,0287 0,0281 0,0274 0,0268 0,0262 0,0256 0,0250 0,0244 0,0239 0,0233
2,00| o0,0228 0,0222 0,0217 0,0212 0,0207 0,0202 0,0157 0,0192 0,0188 0,0183

Comentarios:

i A questdo informa que para um nivel de 95% de confianga, o intervalo para estimar a média foi (8; 10), ou
: seja, 9 + 1. O erro portanto € dado por:

o

E = 2959, —==1
Vn

i Eaquestdo pede o novo intervalo, quando reduzimos o nivel de confianga para 85%, sabendo que os demais

i parametros continuardo os mesmos.

i Assim, precisamos comparar o valor de z para 95% de confianga e o valor de z para 85% de confianga.

: A prova apresenta a tabela normal da forma P(Z > Zo). Para um nivel de 95% de confianca, resta 2,5% abaixo :
: do limite inferior do intervalo e 2,5% acima do limite superior do intervalo, logo, precisamos do valor de Zo :
associado a uma probabilidade P(Z > Zo) = 2,5% = 0,025. Pela tabela fornecida, temos que Zp = 1,96 = 2.

: Para um nivel de 85% de confianca, temos 7,5% (metade) abaixo do limite inferior e 7,5% acima do limite :
superior, logo, precisamos do valor de Zp associado a uma probabilidade P(Z > Zo) = 7,5% = 0,075. Pela tabela
fornecida, temos que Zp = 1,44.

: Agora, vamos calcular a razdo entre os valores de z:

Z85% 1,44
%~ = 0,72
Z95% 2

: Considerando que o erro é diretamente proporcional ao valor de z, a razdo entre os erros segue essa mesma
i proporgao:

Sabendo que o erro a 95% de confianga é igual a 1, entdao o erro a 85% de confianga é:
Egsy, = 0,72 x1=10,72
: Logo, o intervalo de confianca é da forma 9 + 0,72.

Gabarito: C

: (FCC/2014 - TRT/MA) Para responder as questdes use, dentre as informacdes dadas abaixo, as que julgar
: apropriadas. :



Se Z tem distribuicdo normal padrdo, entdo: P(Z < 0,25) = 0,599, P(Z< 0,80) = 0,84, P(Z< 1) = 0,841, P(Z <
: 1,96) = 0,975, P(Z < 3,09) = 0,999 :

Considere Xi, Xz, ...Xn uma amostra aleatdria simples, com reposicdo, da distribuicdo da variavel X, que tem
: distribuicdo normal com média u e variancia 36. Seja X a média amostral dessa amostra. O valor de n para :
: que a distancia entre X e W seja, no maximo, igual a 0,49, com probabilidade de 95% ¢ igual a: :

: a) 256
b) 225
c) 400
d) 144
e) 576
Comentarios:

Ao dizer que a distancia entre a média amostral (ou seja, estimativa da média populacional) e a média
: populacional seja no maximo igual a 0,49 com probabilidade de 95%, a questdo forneceu o erro méximo !
: (X —E; X+ E),E = 0,49, e o nivel de confianga de 95%. '

Para que 95% da distribuicdo esteja no intervalo (X — E; X + E), 2,5% da distribuicdo estara acima desse
: intervalo e 2,5% abaixo: :

25%| / 939, 2,5%

>
|
o>
>
S
+
o)

: Assim, precisamos do valor de z cuja probabilidade P(Z < z) seja igual a 2,5% + 95% = 97,5%.

Pelos valores fornecidas observamos que z = 1,96. Sabendo que a variancia é g% = 36, ou seja, o desvio
padrdo é 0 = Vo2 =36 = 6, tendo em vista que o erro é E = 0,49, temos: :

2

6
_ 2 _
7a 9) = (24)? = 576

n= (1,96.

Gabarito: E.

(FGV/2022 — MPE/SC) O tempo, em horas diarias, que homens com idades entre os 40 e 50 anos acessam
redes sociais segue uma distribuicdo Normal com média 2,5 e desvio padrao 1,5. Para o mesmo grupo etario
de mulheres, esse tempo segue também uma distribuicdo Normal com média 3 e desvio padrdo 1. Serdo
: retiradas duas amostras casuais e independentes, uma de homens e outra de mulheres. :



: O tamanho minimo da amostra da populagdo das mulheres que se pretende com probabilidade pelo menos
: 0,95 e cuja diferenca em valor absoluto entre a média amostral e a média populacional ndo exceda 0,1 é, :
: aproximadamente: :

: a) 20;

b) 100;

c) 250;

d) 385;

e) 500.
Comentarios:

: Essa questdo trabalha com o tamanho amostral, para um intervalo de confianca para a média, com variancia :

conhecida:
n= (%a)

: Em que z é o valor da tabela normal padrdo associado ao nivel de confianca desejado; E é a margem de erro :
: e 0 é o desvio padrao. :

2

: A questdo pede o tamanho minimo para o tempo das mulheres, em que o desvio padrdo é o =1. O
: enunciado informa, ainda, que a probabilidade do intervalo (nivel de confianca) é de 95%, logo, z = 1,96.
Ademais, informa que a diferengca maxima entre a média amostral e a média populacional, que corresponde
a definicdo de margem de erro, é E = 0,1. Substituindo esses dados na férmula, temos:

1,96 \?
n= ( o1 .1) = (19,6)2 = 384,16

: Logo, o menor tamanho amostral, que corresponde ao menor numero inteiro maior que o valor calculado, é :
: 385. '

Gabarito: D

(CESPE 2016/TCE-PA) Considerando uma populacdo finita em que a média da variavel de interesse seja
: desconhecida, julgue o item a seguir.

: Se uma amostra aleatdria simples, sem reposicdo, for obtida de uma populagdo finita constituida por N =45 :
: individuos, o fator de corre¢do para populagio finita ndo serd considerado na definicdo do tamanho da :
: amostra para a estimag&o da média.

: Comentarios:

: Quando uma populagdo é finita, é feito um ajuste na equacgdo para as médias amostrais. Esse ajuste é :
: chamado fator de corregdo. Portanto, usamos sim o fator de correcéo. :

: Gabarito: Errado.



Populacao com Variancia Desconhecida

Sendo a variancia populacional desconhecida, ndo podemos calcular a variancia da média amostral como
= V(X
v(x) =18

n

Entdo, precisamos estimar a varidncia populacional, a partir da varidncia amostral.

O estimador nao tendencioso para a variancia é:

2
S
n—1

Esse estimador vale para populagdes infinitas OU amostras extraidas com reposicao.

Caso a populacdo seja finita, de tamanho N, E a amostra seja extraida sem reposi¢ao, é necessario aplicar

= Al oA q N—n
o fator de corre¢ao, multiplicando o resultado da variancia amostral por N1

Com a estimativa para a variancia populacional, calculamos a variancia da média amostral (basta substituir
a? por s2, na férmula da variancia da média amostral, que conhecemos):

V() =%

Logo, o desvio padrao (ou erro padrdo) da média amostral sera:

D) =V(X) = \/5;2

— S
D(X) = N>

O método para a construcdo do intervalo de confianga sera similar, porém, em vez de considerarmos a
distribuicdo normal, utilizaremos a distribuicdo t-Student, considerando n — 1 graus de liberdade.

Pontue-se que essa distribuicdo é similar a normal, porém mais achatada no centro e com caudas mais largas,
ou seja, apresenta maior variabilidade.
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Precisamos utilizar uma outra distribuicao, que ndo a distribuicdo normal, porque agora a
variancia considerada deixou de ser um valor fixo e passou a ser também uma estimativa,
o que justifica o uso de uma distribuicdo com maior variabilidade do que a normal.

Observe a férmula da transformac3o, considerando os estimadores X e s2:

x—X

e

Se a variancia fosse fixa, teriamos a transformacdo para a normal padrao. Porém, estamos
dividindo pela raiz da estimativa da variancia VsZ.

Vale pontuar que o estimador da variancia s? tem distribui¢do qui-quadrado. Com isso em
mente, compare a férmula da transformacgao indicada acima com a definicao da varidvel t-
Student:

Percebeu a similaridade? Na férmula da transformacdo acima, temos uma divisdo pela raiz
de uma distribui¢do qui-quadrado, assim como na defini¢cdo da varidvel de t-Student.

Considerando que t,_; representa o valor da tabela da distribuigcao t-Student padrdo (com média igual a
zero e desvio padrao igual a 1) paran — 1 graus de liberdade, em que n é o tamanho da amostra, temos:

_)?+E—)?_E

th-1= 5 =5
Vn Vn

S

E = tn—l-ﬁ

Ou seja, o erro é calculado assim como fizemos para a populacdo com variancia conhecida, apenas
substituindo a varidvel da normal padrao pela variavel t-Student. O intervalo de confianga serd da forma

()? — tn_l.%;)? + tn_l.%).

O valor de t,,_; também dependera do nivel de confianga e do tamanho da amostra n.
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Por exemplo, suponha o mesmo nivel de confianga do nosso exemplo anterior de 1 —a = 95% e uma
amostra de tamanho n = 5. Logo, precisamos buscar o valor de t considerando n — 1 = 4 graus de
liberdade. Abaixo, inserimos parte da tabela de t-Student, que apresenta os valores da funcdo acumulada,
ou seja, da forma P(T < t).

Se a probabilidade associada ao intervalo de confianga é de 95%, entdo a probabilidade associada aos valores
acima e abaixo desse intervalo é de 2,5%. Ou seja, a probabilidade associada aos valores abaixo do valor
critico superior é P(X < X + E) = 95% + 2,5% = 97,5%.

2,5% 2,5%

/\ 95%

X—-E X X+E

Assim, devemos buscar o valor de tg para o qual P(T < t,) = 0,975. Pela tabela acima, temos t, = 2,78.
Logo, o intervalo sera da seguinte forma:

— S
X+278.—=
V5

O valor de s é a raiz quadrada da variancia amostral observada. No nosso exemplo anterior, em que
estimamos a variancia da altura populacional, com base em uma amostra de 5 pessoas, calculamos a
variancia amostral em s = 0,0125. Nesse caso, o desvio padrdo é dado por:

s =+/s2 = /0,0125

Portanto, a margem de erro para esse exemplo é:

s . +/0,0125
V5 V5

Para esse mesmo exemplo, a média encontrada foi X = 1,8. Logo, o intervalo de confianca é:

E =278 2,78. = 2,78 x/0,0025 = 2,78 X 0,05 = 0,139

X+E=18+0139 =1,939
X—-E=18-0,139 = 1,661
(1,661; 1,939)



Pontue-se que o tamanho amostral necessario para se obter determinada margem de erro, é calculado de
maneira analoga ao caso da variancia conhecida, ou seja:

e 5
- tn—l-ﬁ
n= (tn_l.%)2

PRATICAR!

: (2019/SEFAZ-BA) Para obter um intervalo de confianga de 90% para a média p de uma populagdo :
normalmente distribuida, de tamanho infinito e varidancia desconhecida, extraiu-se uma amostra aleatéria
de tamanho 9 dessa populacdo, obtendo-se uma média amostral igual a 15 e variancia igual a 16. Considerou-
se a distribuicdo t de Student para o teste unicaudal tal que a probabilidade P(t - to) = 0,05, com n graus de
: liberdade. Com base nos dados da amostra, esse intervalo é igual a

Dados:
n 7 8 9 10 11
to,os 1,90 1,86 1,83 1,81 1,80

a) (12,56; 17,44)
 b) (13,76; 16,24)
| 0) (12,47;17,53)
d) (12,59; 17,41)
e) (12,52; 17,48)
Comentarios:

Pelo enunciado, sabemos que o tamanho amostral é N = 9. Logo, temos N — 1 = 8 graus de liberdade. Pela
tabela fornecida, para 8 de graus de liberdade, observamos que t = 1,86. Considerando, ainda, que a

variancia é s* = 16, logo s = Vs = V16 = 4, temos:

4
E=t. =1,86><§=2,48

2/

Assim, o intervalo de confianga para a média X = 15 é:

: X—E=15-248=1252
: X+E=15+248=17,48
Gabarito: E.
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(FGV/2022 - TIDFT) Em um modelo de simulagdo de uma fila com apenas um servidor para atendimento,
foram realizadas 9 replicacdes para determinar o nimero médio de pessoas em fila. Os resultados obtidos
: para cada replicacdo estdo no quadro a seguir. :

icacs , .. | Desvio .
Replicagdo 1 2 3 4 |5| 6 7 g 9 | Média .| variancia
padrao
Media de 3835 /45(14 2|15 |11 |32]|25| 261 1,20 1,44
pessoas na fila ' ! ' ' ’ ' ' ’ , . ,

O intervalo bilateral de confianca de 95% para a média é, aproximadamente:
 2) (1,83;3,39)
b) (1,73; 3,50)
) (1,69; 3,53)
d) (0,33; 4,83)
 e) (0,04; 5,12)

i Nessa prova, foi fornecida a tabela de t-Student da forma P(T > to), parcialmente replicada a seguir.

Gt A ks Area da cauda superior

0,1 0,05 0,025 0,01 0,005
1 3,078 6,314 12,706 31,821 63,657
2 1,886 2,920 4,303 6,965 9,925
3 1,638 2,353 3,182 4,541 5,841
4 1,533 2,132 2,776 3,747 4,604
5 1,476 2,015 2,571 3,365 4,032
6 1,440 1,943 2,447 3,143 3,707
7 1,415 1,895 2,365 2,998 3,499
8 1,397 1,860 2,306 2,896 3,355
9 1,383 1,833 2,262 2,821 3,250
10 1,372 1,812 2,228 2,764 3,169

{ Comentarios:

Essa questdo trabalha com um intervalo de confianca para a média, com variancia desconhecida:

_ s
Xtt—
Vn

Em que s é a estimativa para o desvio padrdo. Pela tabela fornecida na questdo, observamos que X = 2,61,
;ques=1,2en=9(|ogo,\/—=\/§=3). :

Agora, precisamos encontrar o valor de t. Um intervalo com 95% de confianca deixa 2,5% abaixo do limite
: inferior e 2,5% acima do limite superior. Logo, precisamos do valor de to associada a uma probabilidade P(T :
: >10) =2,5% =0,025. :

: Pela tabela de t-Student fornecida, observamos que, para n - 1 = 8 graus de liberdade e 0,025 de area da
: cauda superior, temos to = 2,306 = 2,3. Substituindo esses dados na formula do intervalo de confianca:

1,2
261+23.—=261+23x04=261%092=(169353)



Intervalo de Confianga para a Proporg¢ao

Para estimar a proporg¢do populacional, p, utilizamos a proporgdo encontrada na amostra, p. A variancia
desse estimador é dada por:

Q)

p.

n

V() =

Lembre-seque § = 1 — p.
O desvio padrao é, portanto:

Assim, a transformacdo para a normal padrdo é:

_p+E-p E

Z A ~ A A
p.-q p.-q
n n
E=z 2
A n

E o intervalo de confianca sera da forma (ﬁ —Z. pn;q:ﬁ +z. ’pn_q>

Vamos supor que tenhamos estimado a propor¢do amostral de defeitoem p = 0,2 (logo, § =1 —p = 0,8),
considerando uma amostra de n = 100 pegas.

Nesse caso, o desvio padrdo (ou erro padrdo) é dado por:

Jﬁ-@ _ JO.Z x08 0,16 04

= = 0,04
n 100 V100 10

Considerando um nivel de confianca de 95% (z = 1,96), a margem de erro sera:

E=z /Tq =196 x 0,04 = 0,0784 = 0,8
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Entdo, o intervalo de confianga para a proporg¢ao sera aproximadamente:

A oA

b+ z. 'qu 0,2 + 0,08 = 0,28

p—z. % ~ 0,2 - 0,08 = 0,12

(0,12; 0,28)

Tamanho Amostral

Também podemos determinar o tamanho amostral, dado um nivel de confianca (1 — @) e um valor de erro
maximo E. Reorganizando a férmula do erro que acabamos de ver, temos (lembre-se que § = 1 — p):

Vamos supor que o erro maximo toleravel seja E = 0,04, mantendo os demais parametros iguais. Nesse caso,
o tamanho da amostra n, necessario é:

1,96\
n, = (W) X 0,2 X 0,8 = (49)2 x 0,16 = 2401 X 0,16 = 384

Vale pontuar que o maior valor de n é obtido comp = @ = 0, 5, considerando o mesmo nivel de confianga
(mesmo z) e o mesmo erro maximo E, pois essa propor¢io esta associada ao maior desvio padrido/variancia.

Assim, mesmo sem ter uma estimativa para a propor¢ao amostral, é possivel determinar um valor maximo
para o tamanho amostral (também chamado de valor seguro), considerando p = § = 0,5 na férmula acima.

Supondo, entdo, z = 1,96 e o erro maximo toleravel E = 0,04, o valor seguro para o tamanho amostral, n,,
sem termos uma estimativa para a propor¢ao amostral é:

1,96\2
n, = (0 04) x 0,5 % 0,5 = (49)2 x 0,25 = 2401 x 0,25 = 600

De modo geral, o valor de n sera maior quanto mais proximo de 0,5 forem essas proporgoes.

Novamente, tal formula pressupde uma populagdo infinita ou amostras extraidas com reposi¢cdo. Caso a
populacdo seja finita e as amostras extraidas sem reposicdo, entdo serd necessario aplicar o fator de correcdo

~ .. . T . N—-n
para populacdo finita. Para isso, devemos multiplicar a férmula do erro pelo fator /Ez
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PRATICAR!

(CESPE 2018/PF) Determinado 6rgdo governamental estimou que a probabilidade p de um ex-condenado
: : voltar a ser condenado por algum crime no prazo de 5 anos, contados a partir da data da libertacdo, seja
: igual a 0,25. :

Essa estimativa foi obtida com base em um levantamento por amostragem aleatéria simples de 1.875
: processos judiciais, aplicando-se o método da méxima verossimilhanca a partir da distribuicdo de Bernoulli. :

Sabendo que P(Z < 2) =0,975, em que Z representa a distribuicdo normal padrao, julgue o item que se segue,
em relacdo a essa situacao hipotética. :

: A estimativa intervalar 0,25 + 0,05 representa o intervalo de 95% de confianca do pardmetro populacional
p. :
Comentarios:
O intervalo de confianga de uma distribuicdo de proporgao é dado por:
pxq

h + Z, X
P I 4y n

: Vamos aos dados do problema:

p = 0,25 - proporg¢ao amostral
g=1-p=0,75

n = 1.875 - tamanho da amostra

Zy = 2 - nivel de confianga de 95% na tabela normal

0,25 x 0,75

+
0.25%2% =575
0,25 + 2 x 0,1875
e = 1.875

0,25+ 2 x,/0,0001

0,25+ 2x 0,01
0,25+ 0,02

! Gabarito: Errado.



(2019/FMS) Uma pesquisa tem como finalidade conhecer a proporg¢do de pessoas em Teresina que teriam
interesse em frequentar uma nova franquia de lanchonete vinda do exterior. O empreendedor diz que sé
vale a pena a instalacdo da franquia, se pelo menos 10% da populacdo tivesse interesse em frequentar o
estabelecimento. Supondo que a proporgao maxima da populagao ndao sera maior que 30%, qual tamanho
de amostra (aproximado) tal que a diferenca entre a proporc¢do populacional e proporgdo amostral ndo tenha
: um erro maior que trés pontos percentuais, com uma confianca de 95%. Obs.: zy=1,96.

: a) 897

b) 683

c) 700

d) 300

e) 654

Comentarios:

O tamanho amostral é dado por:

n= (%)2 p.q .
O enunciado informa que z = 1,96 e E = 0,03. Devemos considerar, ainda, p = 0,3. (Esse é o valor maximo

i para a propor¢do. Quanto mais préximos de 50%, maior serd o valor de n. Logo, ao utilizar o valor de 30%, :
: estamos calculando um valor seguro para o tamanho amostral). Sabendo que § = 1 —p = 0,7, temos: :

—(1'96>2x03><07~897
" =10,03 PO =

Gabarito: A.

(FGV/2022 — MPE/SC) Uma empresa recebeu um lote muito grande, milhdes de pecas de refugo, e deseja
saber quantas pecas devera examinar para estimar a propor¢do de itens defeituosos, de modo que o erro de
estimacdo seja no maximo 2%. Sera empregada uma selecdo aleatdria de itens onde cada um sera
: classificado como defeituoso ou ndo defeituoso. Deseja-se extrair uma amostra aleatéria de tamanho n.

: Tendo como padrdo um grau de confianga de 95%, o tamanho da amostra necessario para garantir o :
i processo é: :

a) 189;

b) 384,

c) 600;

d) 1681;

e) 2401.
Comentarios:

: Essa questdo também trabalha com o tamanho amostral, para a estimagdo de proporgdes:
2

n=(z) -p.4



: Em que z é o valor da tabela normal padrdo associado ao nivel (ou grau) de confian¢a desejado; E é a margem
i de erro (ou erro maximo de estimagdo); p é a estimativa para a proporgdo de sucesso e § € a estimativa para
: a proporgdo de fracasso, sendo § = 1 —p.

: O enunciado informa que o erro maximo é E = 2% = 0,02; e que o grau de confianga é de 95%, logo, z =
: 1,96. A questdo ndo informa a estimativa para a propor¢ao de sucesso, logo, devemos considerar aquela que
maximiza o tamanho da amostra, qual seja, p = § = 0,5. Substituindo esses dados na férmula, temos:

1,96\ 2
n= (m) X 0,5 % 0,5 = (98)2 x 0,25 = 2401

Gabarito: E

Intervalo de Confiancga para a Variancia

O estimador da variancia s, multiplicado pelo fator (na—_zl), segue uma distribuicdo qui-quadrado comn — 1

graus de liberdade:

Como essa distribuicdo é assimétrica, utilizaremos a tabela da distribuicdao qui-quadrado para encontrar
tanto o limite superior, XZ;p, quanto o limite inferior, X3, do intervalo de confianga:

n—1
Xive < (7) s? < Xéyp

Isolando 62 nessa express3do, temos:

n—1).s2 n—1).s2
( 2) <02<( 2)
xSUP XINF

Ou seja, para o limite inferior, dividimos por X%Up e para o limite superior dividimos por XfNF.

Atente-se que X'&;p é um valor maior que X r. Assim, quando dividimos por X&;p (limite inferior) obtemos
um valor menor do que quando dividimos por XA, (limite superior).

Logo, o intervalo de confianca para a variancia é da forma:

<(n—1).52 ) (n—1).sz)

2 4 %
XSUP XINF
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Novamente, os valores XZ,p e X/ sdo obtidos a partir da tabela, dependendo do nivel de confianca 1 — a
desejado e do tamanho da amostra, conforme ilustrado abaixo.

/2 %/

2 2
xINF xSUP

. . . .~ . . 24 . . .~ .
Assim, como para as distribui¢des anteriores, o valor X/ deixa > da distribuicdo abaixo; e o valor X&;p
. a . . .~ . . , ~ . . . . .~
deixa > da distribuicdo acima (a diferenca é que agora ndao estamos mais lidando com uma distribuicdo

simétrica):

P(X? < Xfyp) =5

P(X? < Xgyp) = 1-7

Para ilustrar, vamos supor uma amostra de tamanho n = 5. Abaixo, replicamos os valores da tabela para n —
1 =4 graus de liberdade:

P(Xf <x) | 0,005| 0,00 |0025| 005 | 01 | 025 | 05 | 0,75 | 0,9 | 0,95 | 0,975 | 0,99 | 0,995
x 0,21 | 0,30 | 0,48 | 0,71 | 1,06 | 1,92 | 3,36 | 539 | 7,78 | 9,49 | 11,14 | 13,28 | 14,86

Supondo um nivel de confianca de 1 — a = 0,95 (portanto, @ = 0,05), podemos observar na tabela que o
valor de X/ associado a probabilidade P(X? < XAr) = % = 0,025 é XA = 0,48; e o valor X&p

associado a probabilidade P(X?% < X&;p) =1 — % = 0,975 é XZ;p = 11,14.
Considerando que a variancia amostral seja s? = 0,0125, os limites do intervalo de confianca s3o:

(n—1).s> 4x0,0125 0,05
X%, 11,14 11,14

= 0,004

(n—1).s* 4x0,0125 0,05
XAy 048 048

= (0,104

E o intervalo é, entdo:

(0,004; 0,104)
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PRATICAR!

(FGV/2019 DPE-RJ) Com o objetivo de produzir uma estimativa por intervalo para a variancia populaaonal
5 realiza-se uma amostra de tamanho n = 4, obtendo-se, apds a extracdo, os seguintes resultados:

X1=6,X2=3,X3=11eXs=12

: Informagdes adicionais:

P (X?2<0,75)=0,05P (X*3< 0,40 ) = 0,05

i P(X%4<10,8)=0,95P (X’3<9)=0,95

Entdo, sobre o resultado da estimacdo, e considerando-se um grau de confianca de 90%, tem-se que:
a)5<02<72;

: b) 8<02<180;

i c)6<02<135;

d)4<02<22;

i b) 6<02< 24,

Comentarios:

O intervalo de confianca para a variancia é dado por:

((n —1).s? (n— 1).sz>

2 ’ 2
XSUP ‘XINF

: Primeiro, precisamos calcular a estimativa para variancia s?:

n 7)2

S = e——
n—1

O valor da média amostral é:

_ YX;, 6+3+11+12 32
X: = =—=8
n 4 4

: Logo, o estimador da variancia é:
(6-8)+(3-8)*+(11-8)>+(12-8)> (-2)*>+(=5)*+(3)* + (4)?
4—1 B 3
, 4+25+9+16 54

: Sabendo que sdo n — 1 = 3 graus de liberdade e um intervalo de confianca de 95%, temos XAr=04e
xsup = 9, logo o intervalo de confianga é: :

s?=

3x18
Inf = 5 =6




up =gz = 135
AP
e
ESQUEMATIZANDO

Estimacgao Intervalar
Intervalo para a Média — Variancia conhecida (distribuicdo normal):

2
Margem de Erro: E = z. Z, Tamanho amostral: n = (z. g)
N E

Intervalo para a Média — Variancia desconhecida (distribuicdo t-Student):

s

2
Margem de Erro: E =t Tamanho Amostral: n = (t. E)

s .
n—1-\/_ﬁr

Intervalo para a Proporgao:

— 2
Margem de Erro E = z. /M; Tamanho Amostral: n = (%) D.q

(n-1).s% . (n—l).sz)

Intervalo paraaVariéncia:( T
Xsup XInF
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INFERENCIA BAYESIANA

A inferéncia Bayesiana (ou estatistica Bayesiana) é um assunto que vem recebendo mais atencao,
tanto no mundo académico quanto no mundo pratico das analises Estatisticas. Como reflexo disto,
também estdo surgindo algumas questdes em concursos sobre o tema.

Normalmente, estudamos a inferéncia classica (ou frequentista) que considera que toda a
informacao disponivel estad representada na amostra e que o parametro populacional é fixo.

Ja na inferéncia Bayesiana, além das informacdes disponiveis na amostra, que chamamos de
distribuicdo a posteriori, incorporamos informagdes que sabemos ser verdadeiras, mas que nao
estardo representadas na amostra (ndo observaveis). Essas informacdes podem ser denominadas
subjetivas e compdem a distribuicdo a priori.

Por exemplo, no tocante a eleicbes democraticas, sabemos que um candidato néo terd 100% dos
votos. Essa informacdo pode ser incorporada ao modelo para aprimorar a estimativa. Por outro
lado, a insercdo de informagdes que nao sdo verdadeiras tornam o modelo inapropriado. Por
exemplo, se for considerado que nenhum candidato tera 70% dos votos, mas se isso for de fato
possivel, a estimativa estara enviesada.

Na inferéncia Bayesiana, considera-se também que o parametro populacional a ser estimado é
uma variavel aleatéria (e ndo fixo como na inferéncia classica). Ademais, o que chamavamos de
intervalo de confianca na inferéncia classica passa a ser chamado de intervalo de credibilidade.

o

‘:7
c
c

(-

)
RESUMINDO

Inferéncia Classica ou Frequentista Inferéncia Bayesiana

e Parametro populacional é fixo e Parametro populacional é variavel aleatéria
e Depende de informagdes ndo observaveis
(além das informacdes da amostra)

e Toda a informacdo esta disponivel na amostra

e Apenas distribuicio a posteriori e Depende de uma distribuicao a priori (além da
distribuicdo a posteriori)
* Intervalo de confianca « Intervalo de credibilidade

O nome dessa abordagem decorre do fato de ela ser baseada no Teorema de Bayes (da Teoria
de Probabilidade):
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P(A) x P(B|A)

PUIB) === =

A probabilidade P(A|B) representa a probabilidade a posteriori; P(A) representa a
probabilidade a priori; e P(B|A) representa a funcao de verossimilhanca.

Mais especificamente, a Inferéncia Bayesiana considera que os dados observados
na amostra X;, X5, ..., X, possuem uma distribuicdo condicionada ao parametro
de interesse (ou vetor de parametros) 8 aleatdrio e nao observavel, f(X;|0).

Assim, a partir dos valores observados na amostra, define-se a funcdao de
verossimilhanca, L(8; x). E, aplicando a formula de Bayes, tem-se:

L(8;x)xP(6)

P(OIX = x) = "2

Em que P(6|X = x) corresponde a distribuicdo a posteriori do parametro 6 (de
interesse), dada a amostra observada; P(6) é a distribuicao a priori do parametro
0 e P(X=x) é chamada de distribuicdo preditiva de X, que representa a
distribuicdo associada as observagdes.

O denominador tem pouca importancia nos calculos e um fundamento relevante
do método é que a distribuicdo a posteriori do parametro é proporcional ao
produto entre da versomilhanca (que carrega a distribuicdo da amostra) com a
distribuicao a priori (que carrega a distribuicao prévia, antes dos dados).

P(O|X =x) < L(8;x) X P(0)
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PRATICAR!
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: (2017 - TRF - 2° Regido — Adaptada) Sobre a abordagem bayesiana para estimar um parametro
: 0, julgue as afirmativas a seguir. :

| — Uma distribuicao de probabilidade é atribuida para esse parametro.
Il — A definicdo da distribuicao priori pode ser totalmente subjetiva.
Comentarios:

: Na inferéncia bayesiana, considera-se que o parametro de interesse nao é fixo, mas sim, uma :
i variavel aleatdria. Ou seja, de fato, atribui-se uma distribuicdo ao parametro de interesse e a:
: afirmativa | esta correta.

: Ademais, considera-se uma distribuicao a priori, com informagdes subjetivas, que ndo podem ser :
i observada na amostra. Logo, a afirmativa Il também esta correta.

| Resposta: | e Il certas.

(CESPE/2019 - TJ-AM) A respeito dos diferentes métodos de estimacao de parametros, julgue o
: item a seguir. :

A estimacdo de parametros pelo método bayesiano independe da distribuicdo a priori utilizada.
i Comentdrios:

i Na inferéncia bayesiana, sdo consideradas informacbes ndo observaveis na amostra (subjetivas) :
i que compdem a chamada distribuicdo a priori. Logo, o item esté incorreto. :

Gabarito: Errado.



RESUMO DA AULA

Estimadores Erro Padrao é o desvio
Médi | % E(R g2 _ = padrao (raiz quadrada da
= Média amostral X: £(X) =, V(X) == EP(X) = = variancia) do estimador

— Propor¢ao amostral p: E(p) =p, V(p) = qu,Ep(p) = (P4

_Ixi—X)?
T on-1

= Estimador da varidncia amostral: s?

Propriedades dos Estimadores
= Suficiente (contempla todas as informagdes para estimar o parametro populacional)
= Nao Tendencioso (esperanca do estimador é igual ao parametro populacional)
= Eficiente (menor variancia possivel)
= Consistente (estimativas convergem com o aumento do tamanho amostral)

Métodos de Estimacao

Txi-X)*?

= Método dos Momentos: Resulta em X como estimador para a média; e em g2 = ~

como estimador para a variancia (62 é tendencioso)

= Método da Maxima Verossimilhanca: Resulta em p como estimador para a proporcao; para
- S . . — _ Y(xi-X)? .
uma populacdo normal, em X como estimador da média e 2 = % como estimador

para a variancia (o2 é tendencioso)

= Método dos Minimos Quadrados: Resulta em X como estimador para a média; e em p como

estimador para a proporgao —
Erro Maximo

Estimacao Intervalar (metade da amplitude
do intervalo)

= Erro depende do nivel de confianca desejado e do tamanho da amostra

/
N ~ en . . 3 (o2
= Intervalo de confianca para populacdo com variancia conhecida: X + z.—

5

= Intervalo de confianca para populacdo com variancia desconhecida: X + tn—l-%



