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DISTRIBUIÇÃO AMOSTRAL 

Nesta seção, estudaremos a distribuição de probabilidade dos principais estimadores, chamada de 

Distribuição Amostral. Vale ressaltar que os estimadores são variáveis aleatórias. 

Inicialmente, cabe pontuar que a distribuição de uma amostra aleatória qualquer segue a mesma 

distribuição populacional.  

 

Para entender melhor esse conceito, vamos considerar uma moeda com 2 faces, que vamos denominar face 

0 e face 1. Tratando-se de uma moeda equilibrada, a probabilidade de cada face é de 
12 = 0,5 e a esperança 

e variância são, respectivamente: 

𝜇 = 𝐸(𝑋) = ∑ 𝑥. 𝑃(𝑋 = 𝑥) 𝐸(𝑋) = 0 × 0,5 + 1 × 0,5 = 0,5 𝑉(𝑋) = ∑(𝑥 − 𝜇)2. 𝑃(𝑋 = 𝑥) 

𝑉(𝑋) = (0 − 0,5)2 × 12 + (1 − 0,5)2 × 12 = 0,25 + 0,252 = 0,25 

Suponha que vamos extrair uma amostra aleatórias de tamanho 3, ou seja, vamos lançar a moeda 3 vezes. 

Podemos representar essa amostra por 𝑋1, 𝑋2, 𝑋3.  

Considerando que os possíveis resultados das amostras são os mesmos da população (0 ou 1) e com as 

mesmas probabilidades de 
12 = 0,5 para cada face, então temos: 𝐸(𝑋1) = 𝐸(𝑋2) = 𝐸(𝑋3) = 0 × 0,5 + 1 × 0,5 = 0,5 

𝑉(𝑋1) = 𝑉(𝑋2) = 𝑉(𝑋3) = (0 − 0,5)2 × 12 + (1 − 0,5)2 × 12 = 0,25 + 0,252 = 0,25 

 

Ou seja, a esperança e a variância de cada amostra são iguais às da população: 𝐸(𝑋𝑖) = 𝐸(𝑋) = 𝜇  𝑉(𝑋𝑖) = 𝑉(𝑋) = 𝜎2  

Mais precisamente, toda a distribuição de probabilidade da amostra é igual à distribuição de probabilidade 

da população (as esperanças e as variâncias são iguais como consequência desse fato). 
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No exemplo do lançamento da moeda, a população é infinita, pois podemos lançar a moeda infinitas vezes. 

Quando a população é infinita (ou muito grande em comparação com o tamanho da amostra) ou quando a 

amostra é extraída com reposição dos elementos selecionados, então as amostras são independentes.  

Nesses casos, dizemos que as variáveis que representam as amostras, 𝑋1, 𝑋2, 𝑋3, …, são independentes e 

identicamente distribuídas (i.i.d.), isto é, são independentes e apresentam a mesma distribuição. 

 

(FGV/2021 – FunSaúde/CE) Se X1, X2, ... Xn é uma amostra aleatória simples de uma determinada distribuição 

de probabilidades f(x), avalie se as afirmativas a seguir estão corretas.  

I. X1, X2, ... Xn são independentes.  

II. X1, X2, ... Xn são identicamente distribuídos.  

III. Nem sempre cada Xi, i = 1,..., n, tem distribuição f(x).  

Está correto o que se afirma em 

a) I, apenas. 

b) I e II, apenas. 

c) I e III, apenas. 

d) II e III, apenas. 

e) I, II e III. 

Comentários: 

Essa questão trabalha com conceitos de distribuição amostral. A base da distribuição amostral é que os 

elementos de uma amostra (que o enunciado denotou por X1, X2, ... Xn) são variáveis aleatórias 

independentes que apresentam a mesma distribuição da população (consequentemente, apresentam a 

mesma média e a mesma variância). 

Assim, as afirmativas I e II estão corretas, enquanto a afirmativa III está incorreta, pois cada variável X i 

apresenta a mesma distribuição f(x) da população (sempre). 

Gabarito: B 

 

Agora, estudaremos a distribuição dos estimadores mais utilizados, quais sejam, a média, a proporção e a 

variância amostrais. 
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Distribuição Amostral da Média 

Para estimarmos a média da população 𝝁, utilizamos como estimador a média amostral 𝑿̅. Sendo 𝑋1, 𝑋2, … , 𝑋𝑛 os valores observados da amostra, a média amostral é a razão entre a soma dos valores 

observados, 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛, e o número de elementos observados, 𝑛: 

𝑋̅ = 𝑋1+𝑋2+⋯+𝑋𝑛𝑛   

Assim como os demais estimadores, a média amostral é uma variável aleatória, uma vez que 𝑋̅ varia de 

acordo com os valores observados da amostra 𝑋1, 𝑋2, … , 𝑋𝑛. 

Vamos ao exemplo da moeda lançada 3 vezes. Se o resultado for {0, 0, 1}, a média amostral será: 

𝑋̅ = 0 + 0 + 13 = 13 ≅ 0,33 

Se o resultado for {0, 1, 1}, por exemplo, a média amostral será: 

𝑋̅ = 0 + 1 + 13 = 23 ≅ 0,67 

E qual seria a esperança desse estimador? Bem, sabendo que as faces possíveis são 0 e 1, cada uma com 50% 

de chance, esperamos que as médias desse experimento estejam em torno de 0,5. 

Ou seja, a esperança da média amostral é igual à média populacional? 𝐸(𝑋̅) = 𝝁  

E quanto à variância? A variância da média amostral é dada por: 

𝑉(𝑋̅) = 𝑉(𝑋)𝑛 = 𝜎2𝑛   

Para o exemplo dos 3 lançamentos da moeda, em que V(X) = 0,25 e n = 3, a variância da média amostral é: 

𝑉(𝑋̅) = 0,253 ≅ 0,08 

Note que a variância da média amostral, 𝑽(𝑿̅), é menor do que a variância populacional, 𝑽(𝑿). Além disso, 

quanto maior o tamanho da amostra, 𝒏, menor será a variância da média amostral. 

Isso ocorre porque a média das observações, 𝑋̅, costuma ser um valor bem mais próximo da média 𝜇 (ou 

seja, apresenta bem menos valores extremos) do que as observações 𝑋 por si só. Isso significa que a variância 

da média amostral, 𝑋̅, é menor do que a variância das observações, 𝑋. Lembrando que as observações da 

amostra seguem a mesma distribuição da população, então a variância da média amostral, 𝑉(𝑋̅), é menor 

do que a variância da população.  
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O desvio padrão (raiz quadrada da variância) de um estimador pode ser chamado de erro padrão. 

O erro padrão (ou desvio padrão) da média amostral é dado por: 

𝐸𝑃(𝑋̅) = √𝑉(𝑋̅) = √𝜎2𝑛 = 𝜎√𝑛  

Ou seja, o erro padrão (ou devio padrão) da média amostral pode ser calculado como a raiz quadrada da 

variância da média amostral, √𝑽(𝑿̅), ou como a razão entre o desvio padrão populacional e a raiz do 

número de elementos da amostra, 
𝝈√𝒏. 

Também podemos denotar o erro padrão (ou desvio padrão) da média amostral por 𝜎𝑋̅. Para o nosso 

exemplo, o erro padrão da média amostral pode ser calculado como: 

𝐸𝑃(𝑋̅) = √𝑉(𝑋̅) = √0,253 ≅ 0,29 

 

As fórmulas da esperança e variância podem ser obtidas a partir das respectivas 

propriedades. Sendo 𝑋̅ = 𝑋1+𝑋2+⋯+𝑋𝑛𝑛 ,  a esperança 𝐸(𝑋̅) é dada por: 

𝐸(𝑋̅) = 𝐸 (𝑋1+𝑋2+⋯+𝑋𝑛𝑛 ) = 𝐸 (𝑋1𝑛 ) + 𝐸 (𝑋2𝑛 ) + ⋯ + 𝐸 (𝑋𝑛𝑛 )  

𝐸(𝑋̅) = 1𝑛 𝐸(𝑋1) + 1𝑛 𝐸(𝑋2) + ⋯ + 1𝑛 𝐸(𝑋𝑛)  

Vimos que a esperança amostral é igual à esperança populacional, 𝐸(𝑋𝑖) = 𝐸(𝑋) = 𝜇: 𝑬(𝑿̅) = 1𝑛 𝜇 + 1𝑛 𝜇 + ⋯ + 1𝑛 𝜇 = 𝑛 × 1𝑛 × 𝜇 = 𝝁  

Considerando que as variáveis 𝑋1, 𝑋2, … , 𝑋𝑛 são independentes, a variância 𝑉(𝑋̅) é: 𝑉(𝑋̅) = 𝑉 (𝑋1+𝑋2+⋯+𝑋𝑛𝑛 ) = 𝑉 (𝑋1𝑛 ) + 𝑉 (𝑋2𝑛 ) + ⋯ + 𝑉 (𝑋𝑛𝑛 )  

𝑉(𝑋̅) = 1𝑛2 𝑉(𝑋1) + 1𝑛2 𝑉(𝑋2) + ⋯ + 1𝑛2 𝑉(𝑋𝑛)  

Sabendo que a variância amostral é igual à variância populacional, 𝑉(𝑋𝑖) = 𝑉(𝑋) = 𝜎2: 

𝑽(𝑿̅) = 1𝑛2 𝜎2 + 1𝑛2 𝜎2 + ⋯ + 1𝑛2 𝜎2 = 𝑛 × 1𝑛2 × 𝜎2 = 𝝈𝟐𝒏   
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A variância amostral é igual à variância populacional, 𝑉(𝑋𝑖) = 𝑉(𝑋) = 𝜎2. O que é 

diferente é a variância da média amostral, 𝑉(𝑋̅) = 𝜎2𝑛 . 

Note que a variância da média amostral é menor do que a variância populacional. Isso faz sentido, certo? 

As médias sempre variam menos do que os valores individuais, pois os valores extremos acabam sendo 

compensados quando calculamos a média. Logo, a distribuição da média amostral é menos dispersa do que 

a distribuição populacional. 

 

(CESPE/2016 – TCE/PA) Uma amostra aleatória, com n = 16 observações independentes e identicamente 

distribuídas (IID), foi obtida a partir de uma população infinita, com média e desvio padrão desconhecidos e 

distribuição normal. Tendo essa informação como referência inicial, julgue o seguinte item. 

Para essa amostra aleatória simples, o valor esperado da média amostral é igual à média populacional. 

Comentários: 

Vimos que, de fato, o valor esperado da média amostral (para uma amostra aleatória) é igual à média 

populacional. 

Gabarito: Certo. 

 

(2019 – UEPA) Considere uma amostra aleatória 𝑋1, 𝑋2, . . . , 𝑋𝑛 de uma população normal de média 𝜇 e 

variância σ2 = 9. Então, a média e a variância de 𝑋𝑛̅̅̅̅ = 𝑋1,𝑋2,...,𝑋𝑛𝑛 , são, respectivamente,  

a) 𝜇 e 
3𝑛. 

b) 
𝜇𝑛 e 

9𝑛. 

c) 𝜇 e 
9𝑛. 

d) 𝜇 e 
𝑛9. 

Comentários: 

Vimos que a média e a variância da média amostral são, respectivamente: 𝐸(𝑋̅) = 𝜇 
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𝑉(𝑋̅) = 𝑉(𝑋)𝑛 = 9𝑛 

Gabarito: C. 

 

(VUNESP/2015 – TJ-SP) Resultados de uma pesquisa declaram que o desvio padrão da média amostral é 32. 

Sabendo que o desvio padrão populacional é 192, então o tamanho da amostra que foi utilizada no estudo 

foi 

a) 6. 

b) 25. 

c) 36. 

d) 49. 

e) 70. 

Comentários: 

O desvio padrão (ou erro padrão) da média amostral pode ser calculado como a razão entre o desvio padrão 

da população e a raiz do número de elementos da amostra: 𝜎𝑋̅ = 𝜎√𝑛 

O enunciado informa que o desvio padrão da média amostral é 𝜎𝑋̅ = 32 e o desvio padrão populacional é 𝜎 = 192. Logo: 32 = 192√𝑛  

√𝑛 = 19232 = 6 𝑛 = (6)2 = 36 

Gabarito: C. 

 

(FCC/2012 – TRE-SP) Uma variável aleatória U tem distribuição uniforme contínua no intervalo [𝜶, 𝟑𝜶]. Sabe-

se que U tem média 12. Uma amostra aleatória simples de tamanho n, com reposição, é selecionada da 

distribuição de U e sabe-se que a variância da média dessa amostra é 0,1. Nessas condições, o valor de n é 

a) 80.  

b) 100.  

c) 120.  

d) 140.  

e) 150.  

Comentários: 

O que essa questão exige a respeito da matéria que acabamos de estudar é a fórmula do desvio padrão da 

média amostral: 



 

𝜎𝑋̅ = 𝜎√𝑛 

Assim, podemos escrever o tamanho amostral como: √𝑛 = 𝜎𝜎𝑋̅ 

𝑛 = ( 𝜎𝜎𝑋̅)2 = 𝜎2𝜎𝑋̅2 

Ou seja, o tamanho amostral é a razão entre a variância populacional 𝜎2 (quadrado do desvio padrão 

populacional 𝜎) e a variância da média amostral 𝜎𝑋̅2 (quadrado do desvio padrão da média amostral 𝜎𝑋̅). 

O enunciado informa que a variância da média amostral é 𝜎𝑋̅2 = 0,1.  

Pronto! A matéria desta aula acabou. Agora, para calcular a variância populacional, precisamos saber calcular 

a média e a variância da distribuição contínua uniforme.  

A média (esperança) dessa distribuição é igual à média aritmética dos limites do intervalo, a e b. Sabendo 

que a = 𝜶, b = 3.𝜶 e E(X) = 12, conforme dados do enunciado, temos: 𝐸(𝑋) = 𝑎 + 𝑏2  12 = 𝛼 + 3𝛼2 = 4𝛼2 = 2𝛼 𝛼 = 6 

Ou seja, a = 6 e b = 3x6 = 18. Então, a variância é dada por: 𝑉(𝑋) = (𝑏 − 𝑎)212 = (18 − 6)212 = (12)212 = 12 

Voltando à nossa fórmula para encontrar o tamanho amostral, temos: 𝑛 = 𝜎2𝜎𝑋̅2 = 120,1 = 120 

Gabarito: C 

 

Fator de Correção para População Finita 

Os resultados da variância e do desvio padrão da média amostral são válidos para variáveis 𝑋1, 𝑋2, … , 𝑋𝑛 

independentes, ou seja, quando a população é infinita ou quando as amostras são extraídas com reposição.  

Quando isso não ocorre, ou seja, quando a população é finita e as amostras são extraídas sem reposição, 

precisamos fazer um ajuste. Sendo 𝑛 o tamanho da amostra e 𝑁 o tamanho da população, precisamos 

multiplicar a variância da média amostral, pelo fator de correção de população finita 
𝑵−𝒏𝑵−𝟏.  

𝑉(𝑋∗̅̅ ̅) = 𝜎2𝑛 × 𝑵−𝒏𝑵−𝟏  
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Observe que o fator de correção é menor do que 1, pois 𝑁 − 𝑛 < 𝑁 − 1, logo, o ajuste para populações 

finitas, cuja amostras são extraídas com reposição, diminui a variância da média amostral. 

 

Distribuição da Média Amostral e a Curva Normal 

Quando a população segue distribuição normal (ou gaussiana), a média amostral também seguirá 

distribuição normal. Como vimos anteriormente, a esperança, a variância e o desvio padrão (chamado erro 

padrão) dessa distribuição serão: 𝐸(𝑋̅) = 𝜇 

𝑉(𝑋̅) = 𝜎2𝑛  

𝐸𝑃(𝑋̅) = 𝜎√𝑛 

Ainda que a população não siga distribuição normal, pelo Teorema Central do Limite, é possível aproximar 

a distribuição da média amostral, a uma normal, também com média 𝐸(𝑋̅) = 𝜇, variância 𝑉(𝑋̅) = 𝜎2𝑛  e 

desvio padrão (erro padrão) 𝐸𝑃(𝑋̅) = 𝜎√𝑛.  

De modo equivalente, também podemos dizer que a variável 𝑍𝑋̅, definida abaixo, segue distribuição normal 

padrão (ou reduzida), isto é, com média igual a 0 e desvio padrão igual a 1, o que representamos como 𝑁(0,1): 

𝑍𝑋̅ = 𝑋̅ − 𝜇𝜎√𝑛  

A possibilidade de tal aproximação depende do tamanho da amostra e da distribuição da população. 

Quanto maior o tamanho da amostra e quanto mais próximo de uma normal for a distribuição da população, 

melhor será a aproximação. Usualmente, considera-se que para uma amostra grande, com 𝒏 ≥ 𝟑𝟎, a 

aproximação será satisfatória, para qualquer distribuição populacional. 

 

(CESPE/2014 – ANATEL) Com base no teorema limite central, julgue o item abaixo.  

Sendo uma amostra aleatória simples retirada de uma distribuição X com média µ e variância 1, a distribuição 

da média amostral dessa amostra, 𝑋̅, converge para uma distribuição normal de média nµ e variância 1, à 

medida que n aumenta. 
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Comentários: 

Vimos que a distribuição da média amostral, 𝑋̅, converge para uma distribuição normal à medida que n 

aumenta. Porém, a média dessa distribuição é 𝐸(𝑋̅) = 𝜇 e variância 𝑉(𝑋̅) = 𝑉(𝑋)𝑛 . Sabendo que 𝑉(𝑋) = 1, a 

variância da média amostral é 𝑉(𝑋̅) = 1𝑛. 

Gabarito: Errado. 

 

(CESPE 2018/PF) O tempo gasto (em dias) na preparação para determinada operação policial é uma variável 

aleatória X que segue distribuição normal com média M, desconhecida, e desvio padrão igual a 3 dias. A 

observação de uma amostra aleatória de 100 outras operações policiais semelhantes a essa produziu uma 

média amostral igual a 10 dias. Com referência a essas informações, julgue o item que se segue, sabendo 

que 𝑃(𝑍 >  2)  =  0,025, em que Z denota uma variável aleatória normal padrão. 

O erro padrão da média amostral foi inferior a 0,5 dia. 

Comentários: 

O erro padrão da média amostral é dado por: 𝐸𝑃(𝑋̅) = 𝜎√𝑛 

Na fórmula acima, temos: 𝑛 é o tamanho da amostra (=10); 𝜎 é o desvio padrão amostral (=3). 𝐸𝑃(𝑋̅) = 3√100 = 310 = 0,3 

Gabarito: Certo. 

 

(CESPE/2019 – Analista Judiciário TJ) Um pesquisador deseja comparar a diferença entre as médias de duas 

amostras independentes oriundas de uma ou duas populações gaussianas. Considerando essa situação 

hipotética, julgue o próximo item. 

Para que a referida comparação seja efetuada, é necessário que ambas as amostras tenham N ≥ 30.  

Comentários: 

Quando a população segue uma distribuição normal (ou gaussiana), a média amostral também seguirá uma 

distribuição normal, independente do tamanho da amostra. Logo, o item está errado. 

Para fins de complementação, se a amostra for grande o suficiente (normalmente, consideramos isso para 𝑛 ≥ 30), a média amostral seguirá aproximadamente uma distribuição normal, independente da distribuição 

populacional. 

Gabarito: Errado. 

 

(FCC 2015/SEFAZ-PI) Instrução: Para responder à questão utilize, dentre as informações dadas a seguir, as 

que julgar apropriadas. Se Z tem distribuição normal padrão, então: 

P(Z < 0,4) = 0,655; P(Z < 1,2) = 0,885; P(Z < 1,6) = 0,945; P(Z < 1,8) = 0,964; P(Z < 2) = 0,977.  

Uma auditoria feita em uma grande empresa considerou uma amostra aleatória de 64 contas a receber. Se 

a população de onde essa amostra provém é infinita e tem distribuição normal com desvio padrão igual a R$ 



 

200,00 e média igual a R$ 950,00, a probabilidade da variável aleatória média amostral, usualmente 

denotada por 𝑿, estar situada entre R$ 980,00 e R$ 1.000,00 é dada por 

a) 18,4% 

b) 9,2%  

c) 28,5%  

d) 47,7%   

e) 86,2% 

Comentários: 

O enunciado informa que a população segue distribuição normal, logo, a média amostral também terá 

distribuição normal. Assim, utilizamos a seguinte transformação para a normal padrão:  𝑍𝑋̅ = 𝑋̅ − 𝜇𝜎√𝑛  

O enunciado informa que o tamanho da amostra é n = 64, logo, √𝑛 = 8; que a média populacional é 𝜇 =950 e que o desvio padrão populacional é 𝜎 = 200. Substituindo esses valores, a transformação para 𝑋𝑖𝑛𝑓̅̅ ̅̅ ̅̅ =980 é: 𝑍𝑋̅ = 980 − 9502008 = 30 × 8200 = 65 = 1,2 

Para 𝑋𝑠𝑢𝑝̅̅ ̅̅ ̅̅ = 1000, temos: 𝑍𝑋̅ = 1000 − 9502008 = 50 × 8200 = 2 

Ou seja, a probabilidade desejada corresponde a 𝑃(1,2 < 𝑍 < 2), que pode ser calculada pelos dados 

fornecidos no enunciado: 𝑃(1,2 < 𝑍 < 2) = 𝑃(𝑍 < 2) − 𝑃(𝑍 < 1,2) = 0,977 − 0,885 = 0,092 = 9,2% 

Gabarito: B 

 

Distribuição Amostral da Proporção 

Agora, vamos trabalhar com uma população em que determinada característica está presente em uma 

proporção 𝒑 dessa população, por exemplo, 15% da população apresenta olhos azuis; 20% da população 

está doente, 1% da produção apresenta defeito, etc.  

Um elemento qualquer da população 𝑋 pode apresentar a característica estudada, o que chamamos de 

sucesso (𝑋 = 1), ou não, o que chamamos de fracasso (𝑋 = 0). A probabilidade de sucesso é 𝒑 e a 

probabilidade de fracasso é 𝑞 = 1 − 𝑝. Assim, essa população apresenta uma distribuição de Bernoulli, com 

parâmetro 𝒑.  
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Sendo essa proporção populacional desconhecida, precisamos estimá-la a partir da proporção de sucessos 

na amostra, denotada por 𝒑̂. Considerando que cada observação 𝑋𝑖 da amostra será 𝑋𝑖 = 0 ou 𝑋𝑖 = 1 (como 

para a população), então a proporção de sucessos na amostra pode ser calculada por: 

𝑝̂ = 𝑋1+𝑋2+⋯+𝑋𝑛𝑛   

 

Vamos supor, por exemplo, que estejamos interessados na proporção de defeitos em uma produção de 

medicamentos. Para estimá-la, extraímos uma amostra de 10 medicamentos, que apresentou o seguinte 

resultado, em que 0 representa um item não defeituoso e 1 representa um item defeituoso: 

{0, 0, 1, 0, 0, 0, 1, 0, 0, 0} 

Logo, a proporção encontrada nessa amostra é: 

𝑝̂ = 0 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + 0 + 010 = 210 = 0,2 

 

Note que o estimador 𝑝̂ é calculado da mesma forma que 𝑿̅. Logo, a esperança de 𝑝̂ é calculada da mesma 

forma que para 𝑋̅, utilizando 𝒑 no lugar de 𝜇: 𝐸(𝑝̂) = 𝒑  

Ou seja, a esperança do estimador é igual à proporção populacional. Em outras palavras, a proporção 

amostral tende à proporção populacional. 

 

A variância de 𝑝̂ também é calculada da mesma forma que para 𝑋̅, ou seja: 

𝑉(𝑝̂) = 𝑉(𝑝)𝑛  

Sabendo que 𝑋 segue distribuição de Bernoulli, temos 𝑉(𝑝) = 𝑝. 𝑞, então:  

𝑉(𝑝̂) = 𝑝.𝑞𝑛   

E o erro padrão (ou desvio padrão) para 𝑝̂, raiz quadrada da sua variância é dado por: 

𝐸𝑃(𝑝̂) = √𝑝.𝑞𝑛   
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Sem conhecer a proporção populacional, 𝑝, não podemos calcular a variância da população, 𝑉(𝑝) = 𝑝. 𝑞. 

Assim, utilizamos o estimador 𝒑̂ calculado a partir da amostra para estimar a variância e o desvio padrão.  

A estimativa da variância populacional é dada por: 𝑉(𝑝) = 𝑝̂. 𝑞̂ 

Em que 𝑞̂ = 1 − 𝑝̂. E a estimativa da variância do estimador 𝒑̂ é: 

𝑉(𝑝̂) = 𝑝̂. 𝑞̂𝑛  

 

Para o nosso exemplo, em que encontramos 𝑝̂ = 0,2 (logo, 𝑞̂ = 1 − 𝑝̂ = 0,8). A estimativa da variância da 

proporção populacional é: 𝑉(𝑝) = 𝑝̂. 𝑞̂ = 0,2 × 0,8 = 0,16 

E a estimativa da variância da proporção amostral é: 

𝑉(𝑝̂) = 𝑝̂. 𝑞̂𝑛 = 0,2 × 0,810 = 0,016 

Logo, a estimativa para o erro padrão (ou desvio padrão) da proporção amostral é: 𝐸𝑃(𝑝̂) = √𝑉(𝑝̂) = √0,016 ≅ 0,126 

 

Considerando que cada elemento da população segue distribuição de Bernoulli, então o número de 

elementos com o atributo sucesso encontrados em uma amostra de tamanho 𝑛 segue uma distribuição 

binomial, com parâmetros 𝑛 e 𝑝. Para o nosso exemplo, temos uma distribuição binomial com 𝑛 = 10 e 

proporção estimada 𝑝̂ = 0,2. 

Porém, assim, como vimos para a média amostral, também podemos aproximar, pelo Teorema Central do 

Limite, essa distribuição a uma normal, com média 𝐸(𝑝̂) = 𝑝 e variância 𝑉(𝑝̂) = 𝑝.𝑞𝑛 , quando o tamanho da 

amostra, 𝒏, é grande. 

Por outro lado, se a população for finita e a amostra for extraída sem reposição, será necessário aplicar o 

fator de correção para população finita, multiplicando a variância por 
𝑁−𝑛𝑁−1: 

𝑉(𝑝̂) = 𝑝. 𝑞𝑛 × 𝑁 − 𝑛𝑁 − 1 
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(CESPE 2016/TCE-PA) Em estudo acerca da situação do CNPJ das empresas de determinado município, as 

empresas que estavam com o CNPJ regular foram representadas por 1, ao passo que as com CNPJ irregular 

foram representadas por 0. 

Considerando que a amostra 

{0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1} 

Foi extraída para realizar um teste de hipóteses, julgue o item subsequente. 

A estimativa pontual da proporção de empresas da amostra com CNPJ regular é superior a 50%. 

Comentários: 

O estimador da proporção 𝑝̂ é dado por: 𝑝̂ = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛𝑛  𝑝̂ = 0 + 1 + 1 + 0 + 0 + 1 + 0 + 1 + 0 + 1 + 1 + 0 + 0 + 1 + 1 + 0 + 1 + 1 + 1 + 120 = 1220 = 0,6 

Logo a proporção é de 60%. 

Gabarito: Certo 

 

(CESPE/2019 – TJ-AM) Para estimar a proporção de menores infratores reincidentes em determinado 

município, foi realizado um levantamento estatístico. Da população-alvo desse estudo, constituída por 

10.050 menores infratores, foi retirada uma amostra aleatória simples sem reposição, composta por 201 

indivíduos. Nessa amostra foram encontrados 67 reincidentes. Com relação a essa situação hipotética, julgue 

o seguinte item. 

A estimativa do erro padrão da proporção amostral foi inferior a 0,04. 

Comentários: 

O erro padrão da proporção é dada pela relação: 𝐸 = √𝑝 × 𝑞𝑛  

A questão nos diz que a amostra é composta por 201 indivíduos, sendo 67 deles reincidentes. Assim, temos 

que 𝑛 = 201 e 𝑝 = 67/201 = 1/3. Logo, temos 𝑞 = 1 − 𝑝 = 2/3. Como consequência, o erro padrão é de: 

𝐸 = √13 × 23201 = √ 21809 ≅ 0,033 

Gabarito: Certo.  



 

 

Estimador para a média: 𝑋̅ = 𝑋1+𝑋2+⋯+𝑋𝑛𝑛  

Esperança: 𝐸(𝑋̅) = 𝜇; Variância: 𝑉(𝑋̅) = 𝜎2𝑛 ; Erro Padrão: 𝐸𝑃(𝑋̅) = 𝜎√𝑛  

Estimador para a proporção: 𝑝̂ = 𝑋1+𝑋2+⋯+𝑋𝑛𝑛  

Esperança: 𝐸(𝑝̂) = 𝑝; Variância: 𝑉(𝑝̂) = 𝑝.𝑞𝑛 ; Erro Padrão: 𝐸𝑃(𝑋̅) = √𝑝.𝑞𝑛   

 

Distribuição Amostral da Variância 

Quando a variância da população é desconhecida, precisamos estimá-la a partir da amostra, assim como 

fizemos com a média e a proporção. O estimador da variância que utilizamos para uma amostra de tamanho 𝑛 é: 

𝑠2 = ∑(𝑋𝑖−𝑋̅) 2𝒏−𝟏   

Utilizamos esse estimador, com a divisão por 𝒏 − 𝟏, pelo fato de ele ser melhor do que o estimador que 

apresenta a divisão por 𝑛.  

 

Vamos supor que a variância da altura de determinado grupo de adultos seja desconhecida, 

assim como a sua média. Para estimar esses parâmetros, obtemos uma amostra de 5 

pessoas com os seguintes resultados: 

{1,65; 1,75; 1,8; 1,85; 1,95} 

Primeiro, precisamos calcular a média da amostra (que continua sendo calculada pelo 

somatório das observações, dividido por 𝑛): 𝑋̅ = ∑ 𝑋𝑖𝑛 = 1,65+1,75+1,8+1,85+1,955 = 95 = 1,8  

Victor
Retângulo

Victor
Destacar



 

Agora, calculamos o estimador da variância, somando os desvios em relação à média, 

elevados ao quadrado, e dividindo o somatório por 𝒏 − 𝟏: 𝑠2 = ∑(𝑋𝑖−𝑋̅)2𝒏−𝟏   

𝑠2 = (1,65−1,8)2+(1,75−1,8)2+(1,8−1,8)2+(1,85−1,8)2+(1,95−1,8)24   

𝑠2 = (−0,15)2+(−0,05)2+(0)2+(0,05)2+(0,15)24   

𝑠2 = 0,0225+0,0025+0,0025+0,02254 = 0,054 = 0,0125  

 

 

Sabe-se que uma maneira alternativa de calcular a variância (populacional) é:  𝜎2 = 𝐸(𝑋2) − [𝐸(𝑋)]2  

Para a variância amostral, também podemos utilizar uma fórmula similar a essa, mas com 

as devidas adaptações. No lugar de 𝐸(𝑋), utilizamos a média amostral 𝑋̅; e, no lugar de 𝐸(𝑋2), utilizamos 𝑋2̅̅̅̅ , que é a média dos valores elevados ao quadrado: 

𝑋2̅̅̅̅ = ∑ 𝑋𝑖2𝑛   

Para o exemplo anterior, teríamos: 𝑋2̅̅̅̅ = (1,65)2+(1,75)2+(1,8)2+(1,85)2+(1,95)25 = 16,255 = 3,25  

Por fim, ajustamos o denominador. Para calcular a variância populacional, dividimos por 𝑛 

e para a variância amostral, dividimos por 𝒏 − 𝟏. Logo, precisamos multiplicar o resultado 

por 
𝑛𝒏−𝟏: 𝑠2 = [𝑋2̅̅̅̅ − (𝑋̅)2] × 𝑛𝒏−𝟏  

Para o nosso exemplo, em que 𝑋2̅̅̅̅ = 3,25, 𝑋̅ = 1,8 e 𝑛 = 5, a variância amostral pode ser 

calculada como: 𝑠2 = [3,25 − (1,8)2] × 54 = [3,25 − 3,24] × 54 = 0,01×54 = 0,0125  



 

Para esse estimador, a sua esperança é igual à variância populacional, análogo ao que ocorreu com os 

demais estimadores. A sua variância e erro padrão são dados por: 

𝐸(𝑠2) = 𝜎2  𝑉(𝑠2) = 2.𝜎4𝑛−1  

𝐸𝑃(𝑠2) = √ 2𝑛−1 𝜎2  

Sem conhecer a variância populacional, 𝜎2, não podemos calcular esses parâmetros. Para isso, utilizamos, 

no lugar de 𝜎2, a própria estimativa 𝑠2. 

 

Para o nosso exemplo, em que calculamos 𝑠2 = 0,0125, para a amostra com 𝑛 = 5 observações, o desvio 

padrão (ou erro padrão) de 𝑠2 pode ser estimado como: 

𝐸𝑃(𝑠2) = √ 2𝑛 − 1 𝑠2 = √24 × 0,0125 ≅ 0,009 

 

Se a população seguir uma distribuição normal, então o estimador 𝑠2, multiplicado pelo fator 
𝒏−𝟏𝝈𝟐 , segue 

uma distribuição qui-quadrado com 𝒏 − 𝟏 graus de liberdade: 𝒳𝑛−12 = (𝑛 − 1𝜎2 ) . 𝑠2 

Em outras palavras, o estimador 𝑠2 é uma variável com distribuição qui-quadrado, com 𝑛 − 1 graus de 

liberdade, multiplicada por 
𝜎2𝑛−1: 

𝑠2 = ( 𝜎2𝑛−1) . 𝒳𝑛−12    

Vamos supor que, para uma população normal, a variância populacional seja 𝜎2 = 1, e que vamos extrair 

amostras de tamanho 𝑛 = 5. Nesse caso, a variância amostral 𝑠2 terá a seguinte distribuição: 

𝑠2 = ( 15 − 1) . 𝒳5−12 = 𝒳424  

Ou seja, a variância amostral seguirá uma distribuição qui-quadrado com 𝑛 − 1 = 4 graus de liberdade, 

dividida por 4.  

Assim, inserimos a tabela da distribuição qui-quadrado com 4 graus de liberdade, que apresenta os valores 

de probabilidade 𝑃(𝒳42 < 𝑥) e os respectivos valores de 𝑥. Como a variância amostral segue essa distribuição, 

dividida por 4, criamos uma terceira coluna, dividindo os valores de 𝑥 por 4: 
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𝑃(𝒳42 < 𝑥) 0,005 0,01 0,025 0,05 0,1 0,25 0,5 0,75 0,9 0,95 0,975 0,99 0,995 𝑥 0,21 0,30 0,48 0,71 1,06 1,92 3,36 5,39 7,78 9,49 11,14 13,28 14,86 𝑥/4 0,05 0,07 0,12 0,18 0,27 0,48 0,84 1,35 1,94 2,37 2,79 3,32 3,72 

Ou seja, a probabilidade de a variância amostral observada ser inferior a 0,48 é: 𝑃(𝑠2 < 0,48) = 𝟎, 𝟐𝟓 

 

A partir desse resultado, podemos calcular a esperança e a variância do estimador. A 

esperança é dada por: 𝑠2 = ( 𝜎2𝑛−1) . 𝒳𝑛−12   

𝐸[𝑠2] = 𝐸 [( 𝜎2𝑛−1) . 𝒳𝑛−12 ] = ( 𝜎2𝑛−1) . 𝐸[𝒳𝑛−12 ]  

Considerando que a média de uma distribuição qui-quadrado com 𝑘 graus de liberdade é 

igual a 𝑘, então fazendo 𝑘 = 𝑛 − 1, temos: 𝐸[𝒳𝑛−12 ] = 𝑘 = 𝑛 − 1  

Substituindo no resultado anterior, temos: 

𝐸[𝑠2] = ( 𝜎2𝑛−1) . (𝑛 − 1) = 𝜎2  

Esse é o resultado que vimos no início da seção. A variância do estimador é: 

𝑉[𝑠2] = 𝑉 [( 𝜎2𝑛−1) 𝒳𝑛−12 ] = ( 𝜎2𝑛−1)2 . 𝑉[𝒳𝑛−12 ] = ( 𝜎4(𝑛−1)2) . 𝑉[𝒳𝑛−12 ]  

Considerando que a variância de uma distribuição qui-quadrado com 𝑘 graus de liberdade 

é igual a 2𝑘, então fazendo 𝑘 = 𝑛 − 1, temos: 𝑉[𝒳𝑛−12 ] = 2. 𝑘 = 2. (𝑛 − 1)  

Substituindo no resultado anterior, temos: 𝑉[𝑠2] = ( 𝜎4(𝑛−1)2) . 2. (𝑛 − 1) = 2.𝜎4𝑛−1  

 



 

Vale acrescentar que uma população normal depende dos dois parâmetros, variância e média, os quais são 

independentes. Consequentemente, os estimadores correspondentes também serão independentes. 

 

(FGV/2016 – IBGE) Suponha que uma amostra de tamanho 𝒏 = 𝟓 é extraída de uma população normal, com 

média desconhecida, obtendo as seguintes observações: 𝑿𝟏 = 𝟑, 𝑿𝟐 = 𝟓, 𝑿𝟑 = 𝟔, 𝑿𝟒 = 𝟗 e 𝑿𝟓 = 𝟏𝟐 

São dados ainda os seguintes valores, retirados da tabela da distribuição qui-quadrado:  

• P(𝜒42 < 𝟓) ≅ 𝟎,𝟕𝟏𝟑 

• P(𝜒42 < 𝟏𝟐,𝟓) ≅ 𝟎,𝟗𝟖𝟔  

• P(𝜒52 > 𝟓) ≅ 𝟎,𝟖𝟓𝟒 

• 𝑃(𝜒52  > 𝟏𝟐,𝟓) ≅ 𝟎,𝟗𝟕𝟏 

Se a população tem variância verdadeira 𝝈𝟐 = 𝟒, em nova amostra (𝒏 = 𝟓), a probabilidade de se observar 

uma variância amostral maior do que a anterior é de:  

a) 0,014  

b) 0,029  

c) 0,146  

d) 0,287  

e) 0,713  

Comentários: 

Para resolver essa questão, vamos primeiro calcular a variância amostral obtida nessa primeira amostra: 𝑠2 = ∑(𝑋𝑖 − 𝑋̅) 2𝒏 − 𝟏  

Para isso, precisamos da média amostral: 𝑋̅ = 3 + 5 + 6 + 9 + 125 = 355 = 7 

Agora, podemos calcular a variância amostral dessa primeira amostra: 𝑠12 = (3 − 7)2 + (5 − 7)2 + (6 − 7)2 + (9 − 7)2 + (12 − 7)24  

𝑠12 = (−4)2 + (−2)2 + (−1)2 + (2)2 + (5)24 = 16 + 4 + 1 + 4 + 254 = 504 = 12,5 



 

Para calcular a probabilidade de a variância amostral ser 𝑠2 > 12,5, consideramos que esse estimador é uma 

distribuição qui-quadrado com n – 1 graus de liberdade, multiplicada por ( 𝜎2𝑛−1): 𝑠2 = ( 𝜎2𝑛 − 1) . 𝒳𝑛−12  

Sabendo que a variância populacional é 𝜎2 = 4 e que o tamanho da amostra é 𝑛 = 5, então: 𝑠2 = ( 45 − 1) . 𝒳5−12 = 𝒳42 

Portanto, a variância amostral segue a mesma distribuição de 𝒳42. A probabilidade de 𝑠2 > 12,5 é, portanto: 𝑃(𝑠2 > 12,5) = 𝑃(𝒳42 > 12,5) 

O enunciado informa que 𝑃(𝒳42 < 12,5) = 0,986. A probabilidade 𝑃(𝒳42 > 12,5) é complementar: 𝑃(𝒳42 > 12,5) = 1 − 𝑃(𝒳42 < 12,5) = 1 − 0,986 = 0,014 

Gabarito: A 

 

Distribuições para Amostragem Estratificada 

Para uma amostragem estratificada, com 𝑘 estratos, a média amostral será dada por: 

𝑋̅ = ∑ 𝑁𝑖𝑁𝑘
𝑖=1 𝑥𝑖̅ 

Nessa expressão, 𝑁𝑖 é o tamanho de cada estrato;  𝑁 é o tamanho total da população; e 𝑥𝑖̅, a média amostral 

observada para cada estrato.  

Ou seja, calculamos a média 𝑥𝑖̅ para cada estrato 𝑖, multiplicamos cada valor pelo tamanho do estrato 𝑁𝑖 e 

dividimos pelo tamanho total 𝑁. 

 

Para ilustrar, vamos supor uma população dividida em 3 estratos, com os seguintes tamanhos Ni e os 

seguintes valores de média amostral 𝑥𝑖̅ para cada estrato i: 

Estrato Ni ni 𝑥𝑖̅ 
1 50 5 2 

2 30 3 3 

3 20 2 4 
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A média amostral para toda a população corresponde, então, às médias amostrais dos estratos, ponderadas 

pelos respectivos tamanhos dos estratos: 

𝑋̅ = 50 × 2 + 30 × 3 + 20 × 4100 = 100 + 90 + 80100 = 2,7 

 

Considerando a fórmula da média amostral, podemos calcular a variância da média amostral: 

𝑉(𝑋̅) = 𝑉 (∑ 𝑁𝑖𝑁𝑘
𝑖=1 𝑥𝑖̅) 

Pelas propriedades da variância, temos: 

𝑉(𝑋̅) = ∑ (𝑁𝑖𝑁 )2𝑘
𝑖=1 𝑉(𝑥𝑖̅) 

 

Sendo a variância populacional de cada estrato desconhecida, precisamos estimá-la a partir da estimativa 

da variância para cada estrato encontrada na amostra estratificada. Substituindo, na fórmula acima, 𝑉(𝑋̅) 

por 𝑠𝑥̅2 e 𝑉(𝑥𝑖̅) por 𝑠𝑥̅𝑖2 , temos: 

𝑠𝑥̅2 = ∑ (𝑁𝑖𝑁 )2 × 𝑠𝑥̅𝑖2𝑘
ℎ=1  

Além disso, a estimativa da variância da média amostral para cada estrato 𝑖, 𝑠𝑥̅𝑖2 , considerando uma amostra 

de tamanho 𝑛𝑖 para tal estrato, já com a correção para população finita é dada por: 

𝑠𝑥̅𝑖2 = 𝑠𝑥𝑖2𝑛𝑖 (𝑁𝑖 − 𝑛𝑖𝑁𝑖 − 1 ) 

 

Vamos supor que as estimativas da variância para cada estrato sejam: 

Estrato Ni ni 𝑥𝑖̅ 𝑠𝑥𝑖2  

1 50 5 2 2 

2 30 3 3 1,5 

3 20 2 4 1 
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Assim, as variâncias das médias amostrais para cada estrato são: 

𝑠𝑥̅12 = 25 (50 − 550 − 1) ≅ 0,367 

𝑠𝑥̅22 = 1,53 (30 − 330 − 1) ≅ 0,466 

𝑠𝑥̅32 = 12 (20 − 220 − 1) ≅ 0,474 

 

E a variância da média amostral global é dada por: 

𝑠𝑥̅2 = ( 50100)2 × 0,367 + ( 30100)2 × 0,466 + ( 20100)2 × 0,474 

𝑠𝑥̅2 = 0,25 × 0,367 + 0,09 × 0,466 + 0,04 × 0,474 = 0,092 + 0,042 + 0,019 = 0,153 

 

 

(CESPE/2018 – STM) Um estudo acerca do tempo (x, em anos) de guarda de autos findos em determinada 

seção judiciária considerou uma amostragem aleatória estratificada. A população consiste de uma listagem 

de autos findos, que foi segmentada em quatro estratos, segundo a classe de cada processo (as classes foram 

estabelecidas por resolução de autoridade judiciária.) A tabela a seguir mostra os tamanhos populacionais 

(𝑁) e amostrais (𝑛), a média amostral (𝑥̅) e a variância amostral dos tempos (𝑠2) correspondentes a cada 

estrato. 

 

Considerando que o objetivo do estudo seja estimar o tempo médio populacional (em anos) de guarda dos 

autos findos, julgue os itens a seguir. 



 

(CESPE/2018 – STM) A estimativa do tempo médio populacional da guarda dos autos findos é maior ou igual 

a 12 anos. 

Comentários: 

Em uma amostra aleatória por estratificação, a média da população é calculada pela relação 

𝑋̅ = ∑ 𝑁𝑖𝑁𝑘
𝑖=1 𝑥𝑖̅ 

Em que 𝑘 é a quantidade de estratos; 𝑁𝑖 o tamanho de cada estrato; e 𝑥𝑖̅ a média de cada estrato. 

Vinculando os estratos A, B, C e D aos números 1, 2, 3 e 4, respectivamente, temos: 

𝑋̅ = 𝑁1 × 𝑥1̅̅̅ + 𝑁2 × 𝑥2̅̅ ̅ + 𝑁3 × 𝑥3̅̅ ̅ + 𝑁4 × 𝑥4̅̅ ̅𝑁  

 𝑋̅ = 30000 × 20 + 40000 × 15 + 50000 × 10 + 80000 × 5200000  

 𝑋̅ = 60 + 60 + 50 + 4020  

𝑋̅ = 10,5 

Gabarito: Errado. 

 

(CESPE/2018 – STM) Combinando-se todos os estratos envolvidos, a estimativa da variância do tempo médio 

amostral da guarda dos autos findos é inferior a 0,005 𝑎𝑛𝑜2. 

Comentários: 

Em uma amostragem estratificada, a estimativa da variância da média da amostragem é dada pela relação: 

𝑠𝑥̅2 = ∑ (𝑁𝑖𝑁 )2 × 𝑠𝑥̅𝑖2𝑘
𝑖=1  

Em que 

𝑠𝑥̅𝑖2 = 𝑠𝑥𝑖2𝑛𝑖 (𝑁𝑖 − 𝑛𝑖𝑁𝑖 − 1 ) 

Pelos valores apresentados na tabela, teremos: 

𝑠𝑥̅𝐴2 = 3300 (30000 − 30030000 − 1 ) = 0,0099 



 

𝑠𝑥̅𝐵2 = 16400 (40000 − 40040000 − 1 ) = 0,0396 

𝑠𝑥̅𝐶2 = 5500 (50000 − 50050000 − 1 ) = 0,0099 

𝑠𝑥̅𝐷2 = 8800 (80000 − 80080000 − 1 ) = 0,0099 

Além disso, temos que: 

(𝑁𝐴𝑁 )2 = ( 30000200000)2 = 0,0225 

(𝑁𝐵𝑁 )2 = ( 40000200000)2 = 0,04 

 (𝑁𝐶𝑁 )2 = ( 50000200000)2 = 0,0625 

(NDN )2 = ( 80000200000)2 = 0,16 

Portanto: 

𝑠𝑥̅2 = ∑ (𝑁ℎ𝑁 )2 × 𝑠𝑥̅ℎ2𝐿
ℎ=1  

𝑠𝑥̅2 = (0,0225 ⋅ 0,0099 + 0,04 ⋅ 0,0396 + 0,0625 ⋅ 0,0099 + 0,16 ⋅ 0,0099) 𝑠𝑥̅2 = (0,0225 + 0,0625 + 0,16) ⋅ 0,0099 + 0,04 ⋅ 0,0396 𝑠𝑥̅2 ≅ 0,0041. 
Gabarito: Certo. 

 



 

ESTIMAÇÃO PONTUAL 

A estimação pontual é o valor (número) calculado para o estimador. Os principais estimadores são a média 

amostral 𝑋̅, a proporção amostral 𝑝̂ e a variância amostral 𝑠2.  

Agora, vamos entender por que esses estimadores são utilizados. Vamos estudar as propriedades que 

estimadores devem apresentar e os métodos utilizados para obtê-los. 

 

Propriedades dos Estimadores 

Não é qualquer estimador que vamos querer utilizar para estimar os parâmetros populacionais. Eles devem 

apresentar determinadas características desejáveis. 

  

Suficiência 

Uma estatística (isto é, uma função dos dados observados) é considerada suficiente se ela captura, a partir 
da amostra obtida, toda a informação possível sobre o parâmetro populacional desconhecido, de modo 
que qualquer outra informação não contribuirá com a estimação do parâmetro populacional.  

Por exemplo, sabemos que a média amostral é utilizada para estimar a média populacional. Essa estatística 
é considerada suficiente porque ela captura toda a informação, disponível na amostra, necessária para 
estimar a média populacional. Qualquer outra informação, como a média geométrica ou a variância da 
amostra, não influencia na estimativa da média populacional. 

 

Mais especificamente, sendo X e Y duas amostras que fornecem o mesmo valor para a estatística, 𝑇(𝑋) =𝑇(𝑌), (por exemplo, a mesma média amostral), então essa estatística será considerada suficiente se a 
inferência sobre o parâmetro populacional 𝜃 for a mesma, independente de X ou Y. Dizemos que uma 
estatística 𝑇(𝑋) é suficiente para o parâmetro populacional 𝜃, se a distribuição da amostra, condicionada 

ao parâmetro 𝑻(𝑿), for independente de 𝜽.  

Em outras palavras, uma estatística suficiente é uma forma de resumir as informações presentes na amostra, 
sem perder as informações necessárias para estimar o parâmetro populacional. Por exemplo, a soma dos 
valores presentes em uma amostra de tamanho 𝑛 é uma estatística suficiente para a média da população, 
pois, para estimá-la, basta dividirmos essa estatística por 𝑛. Não importa quais sejam os valores exatos de 
cada variável presente na amostra; se a soma for a mesma, a estimativa para a média será sempre a mesma. 

 

Todos os estimadores que mencionamos anteriormente (média amostral 𝑋̅, proporção amostral 𝑝̂ e variância 
amostral 𝑠2) são considerados suficientes. 
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Há, ainda, as seguintes definições relacionadas à suficiência: 

o Uma estatística é dita suficiente minimal se ela for uma função de qualquer outra 
estatística suficiente. 

o Por outro lado, uma estatística 𝑆(𝑋) é dita anciliar se ela não trouxer informação 
alguma a respeito do parâmetro 𝜃, isto é, se 𝑆(𝑋) for independente de 𝜃. 

o Por fim, uma estatística 𝑇 é dita completa para o parâmetro 𝜃, se o fato de a esperança 
de uma função 𝑔(𝑇) ser igual a zero para todo 𝜃, 𝐸[𝑔(𝑇)] = 0, implicar 
necessariamente em 𝒈(𝑻) = 𝟎 para todo 𝜃.  

Por exemplo, para uma amostra 𝑋1, 𝑋2, … , 𝑋𝑛 com distribuição de Bernoulli e parâmetro 𝑝, 
por exemplo, 𝑝 = 0,2, a estatística 𝑇 = 𝑋1 − 𝑋2 não é completa. Isso porque a esperança 
é 𝐸[𝑋1] = 𝐸[𝑋2] = 𝑝 = 0,2, logo a esperança da estatística é: 𝐸[𝑋1 − 𝑋2] = 𝐸[𝑋1] − 𝐸[𝑋2] = 0  

E isso vale para qualquer valor de 𝒑. Porém, 𝑇 = 𝑋1 − 𝑋2 não é necessariamente igual a 
zero, pois é possível ter 𝑋1 = 1 e 𝑋2 = 0 ou também 𝑋1 = 0 e 𝑋2 = 1. 

 

 

(CESPE/2018 – EBSERH) X1, X2, ..., X10 representa uma amostra aleatória simples retirada de uma distribuição 

normal com média 𝜇 e variância 𝜎2, ambas desconhecidas. Considerando que 𝜇̂ e 𝜎2̂ representam os 
respectivos estimadores de máxima verossimilhança desses parâmetros populacionais, julgue o item 
subsecutivo.  

A soma X1+ X2 +...+ X10 é uma estatística suficiente para a estimação do parâmetro 𝜇. 

Comentários: 

Observe que a soma dos elementos captura todas as informações disponíveis na amostra para a estimação 
da média, de modo que qualquer outra informação (média, variância,...) a respeito dessa amostra não irá 

influenciar na estimação do parâmetro populacional.  

Afinal, a estimativa para o parâmetro 𝜇 será a mesma, sempre que a soma das 10 variáveis for a mesma, 
independentemente dos seus resultados exatos. Logo, a soma dos elementos é uma estatística suficiente. 

Gabarito: Certo. 



 

(CESPE/2013 – Telebras) A respeito de inferência estatística, julgue o item que se segue.  

Considerando uma amostra aleatória simples X1, X2, X3 retirada de determinada distribuição de Bernoulli, 
com parâmetro p desconhecido, é correto afirmar que X1+X2.X3 é estatística suficiente. 

Comentários: 

Observe que ao multiplicarmos X2.X3 há uma possibilidade de perda de informação, pois sendo um dos 
elementos iguais a zero, ficamos sem a informação do outro elemento, ou seja, há perda de informação.  

Assim, ter uma outra informação a respeito dessa amostra irá contribuir com a estimação do parâmetro p. 

Por exemplo, se tivermos X1 = 1, X2 = 1 e X3 = 0 e, portanto, X1 + X2.X3 = 1, a estimativa para a proporção p 
será p = 2/3; e se tivermos X1 = 1, X2 = 0 e X3 = 0, e, portanto, o mesmo valor para a estatística, X1 + X2.X3 = 1, 
a estimativa para p será p = 1/3.  

Ou seja, a estimação do parâmetro p desconhecido pode ser diferente, mesmo se o resultado da estatística 
for igual.  

Logo, essa estatística não é suficiente. 

Gabarito: Errado. 

 

Não viés 

Dizemos que um estimador 𝜃 é não viesado (também chamado de não viciado ou não tendencioso) quando 
a sua esperança é igual ao parâmetro populacional 𝜃 sendo estimado: 

𝐸(𝜃𝑁𝑇̂) = 𝜃   

 

Em relação aos principais estimadores que mencionamos anteriormente, temos: 𝐸(𝑋̅) = 𝜇 𝐸(𝑝̂) = 𝑝 𝐸(𝑠2) = 𝜎2 

Logo, podemos afirmar que a média amostral 𝑋̅ é um estimador não viesado (ENV) para a média 
populacional; o parâmetro amostral 𝑝̂ é um ENV para o parâmetro populacional; e 𝑠2 é um ENV para a 
variância populacional.  
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O estimador para a variância populacional é definido como: 𝑠2 = ∑(𝑋𝑖−𝑋̅) 2𝒏−𝟏   

Dissemos, ainda, que esse estimador é melhor do que o estimador 𝑠∗2 = ∑(𝑋𝑖−𝑋̅) 2𝒏 . Isso 

decorre do fato de o estimador 𝑠∗2 ser tendencioso, ou seja: 𝐸(𝑠∗2) ≠ 𝜎2   

 

Outra forma de descrever essa propriedade é a partir do erro, dado pela diferença entre o estimador e o 
parâmetro populacional: 𝑒 = 𝜃 − 𝜃 

 

A esperança do erro é chamada de viés do estimador (ou tendenciosidade), denotado por 𝑏(𝜃): 𝑏(𝜃) = 𝐸(𝑒) 

 

O viés pode ser calculado pelas propriedades da esperança: 𝑏(𝜃) = 𝐸(𝑒) = 𝐸(𝜃 − 𝜃) = 𝐸(𝜃) − 𝐸(𝜃) 

𝑏(𝜃) = 𝐸(𝜃) − 𝜃   

 

Ou seja, o viés representa a diferença entre a média (ou esperança) das estimativas e o parâmetro a ser 

estimado. Para um estimador 𝜃∗̂ não tendencioso, a sua esperança é 𝐸(𝜃∗̂) = 𝜃. Logo, o viés do estimador 

(esperança do erro) é nulo:  𝑏(𝜃𝑁𝑇̂) = 𝐸(𝜃𝑁𝑇̂) − 𝜃 = 𝜃 − 𝜃 = 0 
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Vamos supor uma amostra de n = 5 elementos X1, X2, X3, X4 e X5 de uma variável X com 
média 𝜇 desconhecida. Agora, vamos calcular o viés do seguinte estimador para a média 𝜇: 𝜃 = 𝑋1 + 𝑋2 + 𝑋3 − 𝑋4 − 𝑋5  𝑏(𝜃) = 𝐸(𝜃) − 𝜇  𝑏(𝜃) = 𝐸(𝑋1 + 𝑋2 + 𝑋3 − 𝑋4 − 𝑋5) − 𝜇  

Pelas propriedades da esperança, temos: 𝑏(𝜃) = 𝐸(𝑋1) + 𝐸(𝑋2) + 𝐸(𝑋3) − 𝐸(𝑋4) − 𝐸(𝑋5) − 𝜇  

Considerando que a amostra segue a mesma distribuição da população, temos 𝐸(𝑋𝑖) =𝐸(𝑋) = 𝜇, logo: 𝑏(𝜃) = 𝜇 + 𝜇 + 𝜇 − 𝜇 − 𝜇 − 𝜇 = 0  

Portanto, esse estimador é não viesado. Vejamos um outro exemplo de estimador para a 
média 𝜇: 𝜃′̂ = 𝑋1 − 𝑋2  𝑏(𝜃′̂) = 𝐸(𝜃′̂) − 𝜇  𝑏(𝜃′̂) = 𝐸(𝑋1 − 𝑋2) − 𝜇 = 𝐸(𝑋1) − 𝐸(𝑋2) − 𝜇 = 𝜇 − 𝜇 − 𝜇 = −𝜇  

Portanto, o estimador 𝜃′̂ é viesado, com viés no valor de −𝜇. 

 

Já, a variância do erro é chamada de Erro Quadrático Médio (EQM): 𝐸𝑄𝑀(𝜃) = 𝑉(𝑒) 

 

Desenvolvendo a expressão da variância do erro, podemos obter o seguinte resultado: 𝐸𝑄𝑀(𝜃) = 𝑉(𝜃) + [𝑏(𝜃)]2
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Ou, simplesmente: 

𝐸𝑄𝑀(𝜃) = 𝜎2 + 𝑏2  

Ou seja, o Erro Quadrático Médio (EQM) é a soma da variância do estimador com o quadrado do viés do 
estimador.  

 

Para estimadores não viesados, o viés do estimador é 𝑏(𝜃𝑁𝑇̂) = 0, logo, o EQM é igual à variância do 

estimador: 𝐸𝑄𝑀(𝜃𝑁𝑇̂) = 𝑉(𝜃𝑁𝑇̂) 

 

Para ilustrar, inserimos abaixo a expressão do EQM de um estimador em que a primeira parcela corresponde 

à variância do estimador 𝑉(𝜃) e a segunda parcela corresponde ao quadrado do viés do estimador [𝑏(𝜃)]2
 

(como na prova da FGV/2017 – IBGE): 

𝐸𝑄𝑀(𝜃1) = 3. 𝜎2𝑛 + (𝜃 − 1𝑛 )2
 

Podemos observar que o viés, (𝜃−1𝑛 ), não é nulo, logo, concluímos que o estimador é tendencioso.  

 

 

Agora, vamos calcular o EQM dos estimadores para a média 𝜇, que vimos anteriormente.  

Para isso, precisamos da variância e do viés do estimador. Como já calculamos o viés, falta 
calcular a sua variância. 𝜃 = 𝑋1 + 𝑋2 + 𝑋3 − 𝑋4 − 𝑋5  𝑉(𝜃) = 𝑉(𝑋1 + 𝑋2 + 𝑋3 − 𝑋4 − 𝑋5)  

Se as amostras forem independentes (população infinita ou amostra extraída com 
reposição), então, pelas propriedades da variância, temos: 𝑉(𝜃) = 𝑉(𝑋1) + 𝑉(𝑋2) + 𝑉(𝑋3) + 𝑉(𝑋4) + 𝑉(𝑋5)  
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Considerando que a amostra segue a mesma distribuição da população, temos 𝑉(𝑋𝑖) =𝑉(𝑋) = 𝜎2, logo: 𝑉(𝜃) = 𝜎2 + 𝜎2 + 𝜎2 + 𝜎2 + 𝜎2 = 5𝜎2  

Como o viés é nulo, o EQM desse estimador é igual variância: 𝐸𝑄𝑀(𝜃) = 𝑉(𝜃) = 5𝜎2  

Para o outro exemplo de estimador, a variância é (considerando as amostras 
independentes): 𝜃′̂ = 𝑋1 − 𝑋2  𝑉(𝜃 ′̂) = 𝑉(𝑋1 − 𝑋2) = 𝑉(𝑋1) + 𝑉(𝑋2) = 𝜎2 + 𝜎2 = 2𝜎2  

Já calculamos o viés do estimador  𝑏(𝜃′̂) = −𝜇.  

Portanto, o EQM é: 𝐸𝑄𝑀(𝜃′̂) = 𝑉(𝜃) + [𝑏(𝜃)]2 = 2𝜎2 + [−𝜇]2 = 2𝜎2 + 𝜇2 

 
Se as amostras não forem independentes, a variância da soma e da subtração de duas variáveis é dada por: 𝑉(𝑋1 + 𝑋2) = 𝑉(𝑋1) + 𝑉(𝑋2) + 2. 𝐶𝑜𝑣(𝑋1, 𝑋2)  𝑉(𝑋1 − 𝑋2) = 𝑉(𝑋1) + 𝑉(𝑋2) − 2. 𝐶𝑜𝑣(𝑋1, 𝑋2)  

 

Podemos também combinar estimadores, formando um novo estimador, por exemplo: 𝜃̆ = 𝜃 + 𝜃′̂ 
 

Como saberemos se o novo estimador é tendencioso ou não?  

Como fizemos anteriormente, aplicando a fórmula do viés: 𝑏(𝜃̆) = 𝐸(𝑒) = 𝐸(𝜃̆) − 𝜃 
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Em relação ao estimador 𝜃̆ = 𝜃 + 𝜃′̂ para a média populacional 𝜇, o seu viés é: 𝑏(𝜃̆) = 𝐸(𝑒) = 𝐸(𝜃̆) − 𝜇 = 𝐸(𝜃 + 𝜃′̂) − 𝜇  

Sabendo que a esperança da soma é a soma das esperanças (propriedade), temos: 𝑏(𝜃̆) = 𝐸(𝜃) + 𝐸(𝜃′̂) − 𝜇  

Para esse exemplo, vimos que o primeiro estimador é não tendencioso, logo, a sua 

esperança é 𝐸(𝜃) = 𝜇.  

Já o segundo estimador é tendencioso com viés 𝑏(𝜃′̂) = −𝜇. Assim, a sua esperança pode 

ser calculada pela fórmula do viés: 𝑏(𝜃′̂) = 𝐸(𝜃 ′̂) − 𝜇 = −𝜇  𝐸(𝜃 ′̂) = 0  

Substituindo os valores de 𝐸(𝜃) = 𝜇 e 𝐸(𝜃 ′̂) = 0 na equação 𝑏(𝜃̆) = 𝐸(𝜃) + 𝐸(𝜃′̂) − 𝜇, 

temos: 𝑏(𝜃̆) = 𝜇 + 0 − 𝜇 = 0  

Como o viés é nulo, esse estimador é não tendencioso! 

 

 

(2019/Analista Censitário – Adaptada) É conhecido que o erro quadrático médio (EQM(𝜃)) mede, em média, 

quão perto um estimador 𝜃 chega ao valor real do parâmetro 𝜃. Diante do exposto, julgue os itens seguintes: 

I – EQM(𝜃) é uma medida que combina viés e variância de um parâmetro; 

II – para estimadores viesados, EQM(𝜃) é igual à variância; 

III – EQM(𝜃) = 𝜃 – Viés(𝜃). 

Comentários: 



 

Em relação ao primeiro item, o EQM(𝜃) combina viés e variância de um estimador (não do parâmetro 
populacional), logo o item I está incorreto. 

Em relação ao segundo item, o EQM(𝜃) é igual à variância para um estimador não viesado, logo o item II está 
incorreto. 

Em relação ao terceiro item, a fórmula do erro quadrático médio é: 𝐸𝑄𝑀(𝜃) = 𝑉(𝜃) + [𝑉𝑖é𝑠(𝜃)]2
 

Logo, o item III está incorreto. 

Resposta: todos os itens errados. 

 

(FGV/2022 - EPE – Adaptada) Considere uma amostra aleatória de n variáveis X1, X2, ..., Xn, normalmente 
distribuídas com média μ e variância σ2. Considere o seguinte estimador da média populacional: 𝑇̅ = 1𝑛2 ∑ 𝑋𝑖𝑛

𝑖=1  

Sobre as propriedades desse estimador, julgue o seguinte item. 

O estimador é não-tendencioso. 

Comentários: 

Para um estimador não tendencioso, a sua esperança é igual ao parâmetro populacional estimado, no caso, 
a média 𝜇. Vamos então calcular a esperança do estimador 𝑇̅: 𝐸(𝑇̅) = 𝐸 ( 1𝑛2 ∑ 𝑋𝑖𝑛

𝑖=1 ) 

Quando multiplicamos uma variável por uma constante, a sua esperança será multiplicada por essa 
constante (propriedade da esperança), logo: 𝐸(𝑇̅) = 1𝑛2 . 𝐸 (∑ 𝑋𝑖𝑛

𝑖=1 ) 

Ademais, a esperança da soma de variáveis é igual à soma das esperanças (outra propriedade da esperança): 𝐸(𝑇̅) = 1𝑛2 . ∑ 𝐸(𝑋𝑖)𝑛
𝑖=1  

Considerando que cada variável da amostra segue a mesma distribuição da população, temos 𝐸(𝑋𝑖) = 𝜇. 
Portanto, a soma ∑ 𝐸(𝑋𝑖)𝑛𝑖=1  para as 𝑛 variáveis corresponde a 𝑛. 𝜇: 𝐸(𝑇̅) = 1𝑛2 . 𝑛. 𝜇 = 𝜇𝑛 

Que é diferente de 𝜇. Logo, o estimador 𝑇̅ é tendencioso. 

Resposta: Errado. 

 



 

(CESPE 2020/TJ-PA) Um estimador que fornece a resposta correta em média é chamado não enviesado. 
Formalmente, um estimador é não enviesado caso seu valor esperado seja igual ao parâmetro que está 
sendo estimado. Os possíveis estimadores para a média populacional (µ) incluem β, média de uma amostra, 
α, a menor observação da amostra, e π, a primeira observação coletada de uma amostra. Considerando essas 
informações, julgue os itens subsequentes. 

I A média de uma amostra (β) é exemplo de um estimador enviesado para a média populacional (µ), pois seu 
valor esperado é igual à média populacional, ou seja, E(β) = µ. 

II A menor observação da amostra (α) é um exemplo de estimador não enviesado, pois o valor da menor 
observação da amostra deve ser inferior à média da amostra; portanto, E(α) < µ. 

III A primeira observação coletada de uma amostra equivale a tomar ao acaso uma amostra aleatória da 
população de tamanho igual a um e, portanto, é considerado um estimador não enviesado. 

Assinale a opção correta. 

a) Nenhum item está certo. 

b) Apenas o item I está certo. 

c) Apenas o item II está certo. 

d) Apenas o item III está certo. 

e) Todos os itens estão certos. 

Comentários: 

A questão trabalha com alguns estimadores: a média amostral β, que normalmente chamamos de 𝑋̅; a menor 
observação da amostra, α; e a primeira observação, π. Em relação ao item I, sabemos que o valor esperado 
da média amostral é igual à média populacional, E(β) = µ, o que defini um estimador não enviesado. Logo, o 
item I está errado. 

Em relação ao item II, o valor esperado da menor observação da amostra é inferior à média da amostral, E(α) 
< µ, o que define um estimador enviesado. Logo, o item II está errado. Em relação ao item III, de fato, a 
primeira observação pode ser considerada uma amostra com tamanho n = 1, ou seja, E(π) = µ. Logo, esse 
estimador é não enviesado. Logo, o item III está certo. 

Gabarito: D. 

 

Eficiência 

Vimos que, para um estimador não tendencioso, o erro quadrático médio é igual à sua variância:  𝐸𝑄𝑀(𝜃𝑁𝑇̂) = 𝑉(𝜃𝑁𝑇̂) 

Assim, a variância de um estimador não tendencioso (que é igual ao erro quadrático médio) está 
inversamente relacionada à precisão da estimativa: quanto menor a variância, maior a precisão.  

Por sua vez, a precisão da estimativa está diretamente relacionada à eficiência do estimador. Ou seja, quanto 
menor a variância do estimador, maior será sua eficiência. Essa comparação também pode ser feita para 
estimadores com o mesmo viés. 
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Dizemos que um estimador é eficiente se for não viesado e apresentar a menor variância possível. Vale 
pontuar que tanto a média amostral quanto a proporção amostral são estimadores eficientes. 

 

Um estimador é dito assintoticamente eficiente quando a sua matriz de variância-
covariância assintótica não é maior que a de qualquer outro estimador, ou seja, quando a 
sua variância converge mais rapidamente.  

 

 

Existe um limite inferior para a variância de um estimador não tendencioso, chamado 
limite de Cramér-Rao, calculado a partir da função log-verossimilhança da amostra. 
Nenhum estimador não tendencioso terá uma variância inferior a esse limite.  

Quando um estimador não tendencioso apresenta variância igual ao limite de Cramér-Rao, 
então podemos concluir que tal estimador é eficiente, pois apresenta a menor variância 
possível.  

Por exemplo, para uma população com distribuição normal, o limite de Cramér-Rao para 

estimadores não tendenciosos da média populacional é 
𝜎2𝑛 , que é justamente a variância 

da média amostral, 𝑋̅. Por se tratar de um estimador não tendencioso com a menor 
variância possível, concluímos que tal estimador é eficiente. 

No entanto, nem sempre o limite de Cramér-Rao pode ser atingido por um estimador não 
tendencioso.  

Por exemplo, para uma população com distribuição normal, o limite de Cramér-Rao para 

estimadores da variância populacional é 
2.𝜎4𝑛 , porém não há estimador não tendencioso 

com essa variância - todos apresentam variância maior que esse limite. 

Em outras palavras, a variância de um estimador eficiente, isto é, de um estimador não 
tendencioso com a menor variância possível, não será necessariamente igual ao limite de 
Cramér-Rao. 
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(CESPE/2019 – TJ-AM) Com relação aos parâmetros estatísticos e suas estimativas, julgue o item que se 
segue.  

Entre dois estimadores, A e B, com consistência, viés e demais características iguais, o estimador mais útil é 
aquele que possui menor variância. 

Comentários: 

Para estimadores com todas as demais características iguais, o melhor estimador será aquele com a menor 
variância, que está associada ao erro quadrático médio (EQM). 

Gabarito: Certo 

 

(2018 – Petrobras) Seja (Y1 , Y2 , Y3 ) uma amostra aleatória simples extraída de modo independente de uma 
população com média μ e variância σ2, ambas desconhecidas. Considere os dois estimadores da média da 
população definidos abaixo 𝜇1̂ = 𝑌1+2.𝑌2+3.𝑌36  e 𝜇2̂ = 𝑌1+𝑌2+𝑌33  

Relativamente a esses dois estimadores, conclui-se que: 

a) apenas o primeiro estimador é não tendencioso. 

b) apenas o segundo estimador é não tendencioso.  

c) os dois estimadores são não tendenciosos, mas a eficiência não pode ser determinada sem a estimação 
da variância σ2 . 

d) os dois estimadores são não tendenciosos, mas o primeiro é mais eficiente por apresentar a variância 
inferior à do segundo estimador. 

e) os dois estimadores são não tendenciosos, mas o segundo é mais eficiente por apresentar a variância 
inferior à do primeiro estimador. 

Comentários: 

O viés do estimador é a esperança do seu erro: 𝑏(𝜃) = 𝐸(𝑒) = 𝐸(𝜃 − 𝜃) = 𝐸(𝜃) − 𝜃 

O viés do primeiro estimador é: 

𝑏(𝜇1̂) = 𝐸 (𝑌1 + 2. 𝑌2 + 3. 𝑌36 ) − 𝜇 

Pelas propriedades da esperança, temos: 



 

𝑏(𝜇1̂) = 16 [𝐸(𝑌1) + 2. 𝐸(𝑌2) + 3. 𝐸(𝑌3)] − 𝜇 

Sabendo que a distribuição da amostra é igual à distribuição da população, temos 𝐸(𝑌1) = 𝐸(𝑌) = 𝜇: 

𝑏(𝜇1̂) = 16 [𝜇 + 2. 𝜇 + 3. 𝜇] − 𝜇 = 16 [6. 𝜇] − 𝜇 = 𝜇 − 𝜇 = 0 

Logo, o primeiro estimador é não viesado (alternativa B errada). 

Similarmente, o viés do segundo estimador é dado por: 

𝑏(𝜇2̂) = 𝐸 (𝑌1 + 𝑌2 + 𝑌33 ) − 𝜇 

𝑏(𝜇2̂) = 13 [𝐸(𝑌1) + 𝐸(𝑌2) + 𝐸(𝑌3)] − 𝜇 

𝑏(𝜇2̂) = 13 [𝜇 + 𝜇 + 𝜇] − 𝜇 = 13 [3. 𝜇] − 𝜇 = 𝜇 − 𝜇 = 0 

Ou seja, o segundo estimador também não é viesado (alternativa A errada). 

A eficiência do estimador não viesado é medida por sua variância. A variância do primeiro estimador é dada 
por: 

𝑉(𝜇1̂) = 𝑉 (𝑌1 + 2. 𝑌2 + 3. 𝑌36 ) 

Pelas propriedades da variância, aplicável a variáveis independentes, temos: 

𝑉(𝜇1̂) = 162 [𝑉(𝑌1) + 22. 𝑉(𝑌2) + 32. 𝑉(𝑌3)] = 136 [𝑉(𝑌1) + 4. 𝑉(𝑌2) + 9. 𝑉(𝑌3)] 

Sabendo que a distribuição da amostra é igual à distribuição da população, temos 𝑉(𝑌1) = 𝑉(𝑌) = 𝜎2: 

𝑉(𝜇1̂) = 136 [𝜎2 + 4. 𝜎2 + 9. 𝜎2] = 136 [14. 𝜎2] = 718 𝜎2
 

Similarmente, a variância do segundo estimador é dada por: 

𝑉(𝜇2̂) = 𝑉 (𝑌1 + 𝑌2 + 𝑌33 ) = 132 [𝑉(𝑌1) + 𝑉(𝑌2) + 𝑉(𝑌3)] = 19 [𝑉(𝑌1) + 𝑉(𝑌2) + 𝑉(𝑌3)] 
𝑉(𝜇2̂) = 19 [𝜎2 + 𝜎2 + 𝜎2] = 19 [3. 𝜎2] = 39 𝜎2 = 618 𝜎2 

Como a variância do segundo estimador é menor que a variância do primeiro estimador, concluímos que o 
segundo estimador é mais eficiente. 

Gabarito: E 



 

Consistência 

Para um estimador consistente 𝜃𝐶̂ , as suas estimativas convergem para o parâmetro populacional 𝜃 com o 
aumento do tamanho amostral.  

 

 

Matematicamente, a definição de consistência é: lim 𝑛→∞ 𝑃(|𝜃𝐶̂ − 𝜃| > 𝜀) = 0  

para algum valor 𝜀 > 0 pequeno.  

Ou seja, quando o tamanho da amostra 𝑛 tende a infinito, a probabilidade de um estimador 

consistente 𝜃𝐶  diferir do parâmetro verdadeiro 𝜃 (em mais do que 𝜀) é nula.  

 

O estimador 𝜃 será consistente se a sua esperança 𝐸(𝜃) tende ao parâmetro populacional 𝜃 e sua variância 𝑉(𝜃) tende a zero, quando o tamanho da amostra 𝑛 tende ao infinito: 𝐥𝐢𝐦 𝒏→∞ 𝑬(𝜽̂) = 𝜽 

𝐥𝐢𝐦 𝒏→∞ 𝑽(𝜽̂) = 𝟎 

 

Todos os estimadores que mencionamos anteriormente (média amostral 𝑋̅, proporção amostral 𝑝̂ e variância 
amostral 𝑠2) são consistentes.  

 

Ademais, a estimativa tendenciosa para a variância amostral 𝑠∗2 = ∑(𝑋𝑖−𝑋̅) 2𝒏  também é consistente. 

 

Podemos deduzir se essas duas características estão presentes ou não, a partir da fórmula do Erro 

Quadrático Médio do estimador: 𝐸𝑄𝑀(𝜃) = 𝑉(𝜃) + [𝑏(𝜃)]2
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Vamos considerar o mesmo exemplo dado na prova da FGV/2017 (IBGE), em que a primeira expressão 

corresponde à variância do estimador, 𝑉(𝜃1̂), e a segunda expressão ao quadrado do viés do estimador, [𝑏(𝜃1̂)]2
: 

𝐸𝑄𝑀(𝜃1) = 3. 𝜎2𝑛 + (𝜃 − 1𝑛 )2
 

Podemos deduzir que o viés é: 

𝑏(𝜃1) = 𝜃 − 1𝑛  

Apesar de não ser nulo, na sua expressão, consta uma divisão por 𝑛. Por isso, conforme 𝑛 aumenta, o viés 
diminui. No limite, quando 𝑛 tende a infinito, o viés é igual a zero, portanto, pode-se dizer que o estimador 
é assintoticamente não tendencioso. 

E a variância é: 

𝑉(𝜃1) = 3. 𝜎2𝑛  

Nessa expressão, também consta uma divisão por 𝑛. Logo, quando 𝑛 tende a infinito, a sua variância é igual 
a zero e o estimador é assintoticamente eficiente.  

Como o estimador apresenta as duas características, podemos concluir que é consistente. 

 

 

Se o estimador apresentar as duas propriedades assintóticas, então podemos concluir que 
é consistente.  

Porém, se o estimador não apresentar essas propriedades assintóticas, não podemos 
concluir que o estimador é inconsistente.  

Em outras palavras, um estimador pode ser assintoticamente tendencioso e/ou 
assintoticamente ineficiente e, ainda assim, ser consistente.  

Ou seja, essas propriedades são condições suficientes, que nos permitem concluir que o 
estimador é consistente; porém, não são necessárias para que um estimador seja 
consistente.  
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(CESPE/2019 – TJ-AM) Com relação aos parâmetros estatísticos e suas estimativas, julgue o item que se 
segue.  

Situação hipotética: A e B são dois estimadores não viciados e diferentes utilizados para estimar um mesmo 
parâmetro. A variância de A é menor que a variância de B. Assertiva: Em relação à consistência desses 
estimadores, é correto afirmar que o estimador A é mais consistente que o B. 

Comentários: 

Um estimador é dito consistente quando a esperança tende ao estimador e a variância tende a zero, quando 
a amostra cresce.  

Logo, o fato de a variância de A ser menor do que a variância de B não nos permite afirmar que A é mais 
consistente que B.  

Gabarito: Errado 

 

(FGV/2019 – DPE-RJ – Adaptada) Sobre as principais propriedades dos estimadores pontuais, para pequenas 
e grandes amostras, julgue os itens a seguir.  

I – Se lim𝑛→∞ 𝐸𝑄𝑀(𝜃) = +∞, então lim 𝑛→∞ 𝑃(|𝜃 − 𝜃| < 𝜀) ≠ 0. 

II – Um estimador que seja assintoticamente tendencioso não poderá ser consistente. 

Comentários: 

Esses 2 itens trabalham com o fato de que as propriedades assintóticas são condições suficientes, porém 
não necessárias para a consistência do estimador.  

O item I descreve um estimador cujo erro quadrático médio (EQM) cresce com o aumento do tamanho 
amostral 𝑛.  

Como o EQM é a soma da variância com o quadrado do viés, 𝐸𝑄𝑀(𝜃) = 𝑉(𝜃) + [𝑏(𝜃)]2
, então ou o viés 

cresce com o aumento de 𝑛 (tendencioso, mesmo em termos assintóticos) ou a variância cresce com o 
aumento de 𝑛 (não é assintoticamente eficiente), ou ambos.  

Portanto, não podemos concluir que o estimador é consistente, pois ele não segue uma ou ambas as 
propriedades assintóticas.  

Por outro lado, também não podemos concluir que o estimador é inconsistente, pois é possível que um 
estimador não siga as propriedades assintóticas, mas ainda assim seja consistente.  

Ou seja, não podemos afirmar que lim 𝑛→∞ 𝑃(|𝜃 − 𝜃| < 𝜀) ≠ 0. Por isso, o item I está errado. 

Similarmente, em relação ao item II, um estimador pode ser consistente, ainda que seja assintoticamente 
tendencioso. 

Resposta: Ambos os itens errados. 



 

 

Estatística Suficiente: Captura todas as informações disponíveis na amostra para estimar 
o parâmetro populacional 

Estimador Não Viesado (ENV), ou Não Viciado, ou Não Tendencioso: Esperança do 
estimador igual ao parâmetro; Esperança do erro igual a zero: 𝐸(𝜃) = 𝜃 ↔  𝐸(𝑒) = 0  

𝑠∗2 = ∑(𝑋𝑖−𝑋̅) 2𝒏  é tendencioso; 𝑋̅, 𝑝̂ e 𝑠2 são não tendenciosos 

Estimador Eficiente: apresenta a menor variância 𝑉(𝜃) possível. 𝑋̅ e 𝑝̂ são eficientes 

Estimador Consistente: estimativas convergem para parâmetro populacional se: lim 𝑛→∞ 𝐸(𝜃) = 𝜃, lim 𝑛→∞ 𝑉(𝜃) = 0 

Todos os estimadores que estudamos são consistentes. 

 

Métodos de Estimação 

Para obtermos bons estimadores, de acordo com os critérios que vimos, utilizamos métodos de estimação. 

Estudaremos agora alguns desses métodos. 

 

Método dos Momentos 

O Método dos Momentos se baseia nos momentos teóricos e amostrais das variáveis aleatórias. O 𝑘-ésimo 

momento teórico da variável 𝑋, denotado por 𝜇𝑘, é: 𝜇𝑘 = 𝐸(𝑋𝑘) 

Se a variável for discreta, temos: 𝜇𝑘 = 𝐸(𝑋𝑘) = ∑ 𝑥𝑘 . 𝑃(𝑋 = 𝑥) 
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Em particular, o primeiro momento teórico é igual à esperança da variável: 𝜇1 = 𝐸(𝑋) = ∑ 𝑥. 𝑃(𝑋 = 𝑥) 

Se a variável for contínua, substituímos o somatório pela integral e a função de probabilidade 𝑃(𝑋 = 𝑥) pela 

função densidade de probabilidade 𝑓(𝑥). 

Pontue-se que é possível que distribuições distintas apresentem os mesmos momentos teóricos. 

 

Os momentos amostrais são calculados de maneira análoga. O 𝑘-ésimo momento amostral, denotado por 𝑚𝑘, é a soma dos valores observados elevados a 𝑘, dividida pelo tamanho da amostra, 𝑛: 

𝑚𝑘 = 1𝑛 ∑ 𝑋𝑖𝑘𝑛
𝑖=1  

Em particular, o primeiro momento amostral (𝑘 = 1) consiste na média amostral: 𝑚1 = ∑ 𝑋𝑖𝑛𝑖=1𝑛 = 𝑋̅ 

E o segundo momento amostral (𝑘 = 2) corresponde ao que definimos por 𝑋2̅̅̅̅ : 𝑚2 = ∑ 𝑋𝑖2𝑛𝑖=1𝑛 = 𝑋2̅̅̅̅  

Para o exemplo das alturas, em que os 𝑛 = 5 valores da amostra observada foram {1,65; 1,75; 1,8; 1,85; 

1,95}, o primeiro momento amostral é igual a média amostral: 𝑚1 = 𝑋̅ = ∑ 𝑋𝑖𝑛 = 1,65 + 1,75 + 1,8 + 1,85 + 1,955 = 95 = 1,8 

E o segundo momento amostral é a soma dos valores observados, elevados ao quadrado, divididos pelo 

tamanho da amostra: 

𝑚2 = 𝑋2̅̅̅̅ = ∑ 𝑋𝑖2𝑛 = (1,65)2 + (1,75)2 + (1,8)2 + (1,85)2 + (1,95)25 = 16,255 = 3,25 

 

Para calcular os estimadores pelo método dos momentos (EMM), que podemos denotar por 𝜃𝑀𝑀, 

igualamos os momentos teóricos (ou populacionais) aos momentos amostrais: 𝜇𝑘 = 𝑚𝑘 

Essa equação é feita para todos os parâmetros do modelo. Por exemplo, se houver 2 parâmetros, fazemos: 𝜇1 = 𝑚1 𝜇2 = 𝑚2 

Em seguida, resolvemos o sistema de equações. 
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Por exemplo, o EMM para a média populacional, 𝜇̂𝑀𝑀, é dado por: 𝜇̂𝑀𝑀 = 𝑚1 = ∑ 𝑋𝑖𝑛𝑖=1𝑛 = 𝑿̅ 

 

Ou seja, a média amostral é o estimador para a média populacional, obtido pelo método 

dos momentos.  

 

Agora, vamos calcular o estimador de 𝜃 pelo método dos momentos para uma variável uniforme no intervalo (0, 𝜃). Nesse caso, temos um único parâmetro, então basta calcularmos o primeiro momento: 𝜇1 = 𝑚1 = 𝑋̅ 

Para uma variável uniforme em um intervalo (𝑎, 𝑏), a média populacional (ou esperança da variável) 

corresponde à média aritmética entre os extremos do intervalo: 𝜇1 = 𝑎 + 𝑏2 = 0 + 𝜃2 = 𝜃2 = 𝑋̅ 𝜃𝑀𝑀 = 2. 𝑋̅ 

Assim, o estimador para o parâmetro 𝜃 obtido pelo método dos momentos é o dobro da média amostral. 

 

Em relação à variância, sabemos que 𝜎2 = 𝐸(𝑋2) − [𝐸(𝑋)]2, ou seja, a variância populacional é a diferença 

entre o segundo momento e o quadrado do primeiro momento. Logo, o EMM para a variância é a diferença 

entre o segundo momento amostral e o quadrado do primeiro momento amostral (o qual corresponde à 

média amostral): 

𝜎̂𝑀𝑀2 = 𝑚2 − (𝑚1)2 = ∑ 𝑋𝑖2𝑛𝑖=1𝑛 − 𝑋̅2 

Com manipulações algébricas, obtemos como resultado: 𝜎̂𝑀𝑀2 = ∑ (𝑋𝑖𝑛𝑖=1 − 𝑋̅)2𝒏  

Entretanto, sabemos que esse estimador é tendencioso, ou seja, a esperança desse estimador é diferente 

do parâmetro populacional estimado (variância): 

𝐸(𝜎̂𝑀𝑀2 ) ≠ 𝜎2  

Victor
Destacar

Victor
Destacar



 

Portanto, nem sempre o estimador obtido pelo método dos momentos apresenta boas propriedades. 

Inclusive, tais estimadores podem não ser suficientes. 

Também é possível ter mais de um estimador para um mesmo parâmetro populacional. Para a distribuição 

de Poisson, por exemplo, temos 𝐸(𝑋) = 𝑉(𝑋) = 𝜆. Assim, o parâmetro 𝜆 pode ser estimado tanto por 𝜇̂𝑀𝑀, 

quanto por 𝜎̂𝑀𝑀2 , o que pode resultar em estimativas bem diferentes. 

 

Ademais, é possível obter valores negativos para os parâmetros de uma distribuição 
binomial, segundo método dos momentos. Vejamos porquê: 

Como há 2 parâmetros para essa distribuição, precisamos de 2 momentos. O primeiro 
momento populacional é: 𝜇1 = 𝐸(𝑋) = 𝑛. 𝑝  

Sabemos que a variância da binomial é 𝑉(𝑋) = 𝑛. 𝑝. (1 − 𝑝). Lembrando que a variância 
pode ser calculada como 𝑉(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2, podemos calcular 𝐸(𝑋2) para essa 
distribuição: 𝜇2 = 𝐸(𝑋2) = 𝑉(𝑋) + [𝐸(𝑋)]2 = 𝑛. 𝑝. (1 − 𝑝) + [𝑛. 𝑝]2  𝜇2 = 𝐸 = 𝑛. 𝑝. (1 − 𝑝) + 𝑛2. 𝑝2  

Para calcular os EEMs, fazemos 𝑚1 = 𝜇1 e 𝑚2 = 𝜇2. Sabendo que o primeiro momento 
amostral é 𝑚1 = 𝑋̅, então precisamos resolver o seguinte sistema de equações, supondo 
que foi obtida uma amostra de tamanho 𝑘: 

{ 𝑋̅ = 𝑛. 𝑝(1𝑘) ∑ 𝑋𝑖2𝑘𝑖=1 = 𝑛. 𝑝. (1 − 𝑝) + 𝑛2. 𝑝2}  

Resolvendo esse sistema (que não vamos demonstrar aqui), obtemos as seguintes 
expressões para os estimadores dos parâmetros 𝑛 e 𝑝: 𝑛̂ = 𝑋̅2𝑋̅−(1𝑘) ∑ (𝑋𝑖−𝑋̅)2𝑘𝑖=1                  𝑝̂ = 𝑋̅𝑛̂  

Como o valor de (1𝑘) ∑ (𝑋𝑖 − 𝑋̅)2𝑘𝑖=1  pode superar o valor de 𝑋̅, é possível que o 

denominador de 𝑛̂ seja negativo e assim obtermos tanto 𝑛̂ quanto 𝑝̂ negativos, o que é 
mais um indicativo de que o método dos momentos pode não resultar em bons 
estimadores. 
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(2017 – TRF-2ª Região) Considerando o método de estimação conhecido como Método dos Momentos, 
assinale a afirmativa INCORRETA. 

a) Estimadores obtidos utilizando o k-ésimo momento não têm propriedades assintóticas para k ≥ 2. 

b) O k-ésimo momento amostral é dado por 𝑚𝑘 = 1𝑛 ∑ 𝑋𝑖𝑘𝑛𝑖=1  e o k-ésimo momento populacional é dado por 

E(Xk ). 

c) Duas variáveis aleatórias com funções densidade de probabilidade distintas podem ter os mesmos 
momentos. 

d) Este método iguala os momentos da população aos momentos amostrais. Os estimadores são obtidos 
resolvendo a equação ou o sistema de equações resultante. 

Comentários: 

Em relação à alternativa A, sabemos que para k = 2, temos 𝑚2 = ∑ 𝑋𝑖2𝑛𝑖=1𝑛 .  

Conforme 𝑛 aumenta, esse valor tende a zero. Logo, não podemos dizer que tais estimadores não possuem 
propriedades assintóticas. Assim, a alternativa A está INCORRETA. 

Em relação à alternativa B, vimos que o k-ésimo momento amostral é, de fato, 𝑚𝑘 = 1𝑛 ∑ 𝑋𝑖𝑘𝑛𝑖=1  e que o k-

ésimo momento populacional é 𝜇𝑘 = 𝐸(𝑋𝑘). Logo, a alternativa B está CORRETA. 

Em relação à alternativa C, de fato, distribuições distintas podem apresentar momentos iguais, logo a 
alternativa C está CORRETA. 

Em relação à alternativa D, vimos que o método dos momentos iguala os momentos amostrais aos 
momentos teóricos (ou populacionais) aos momentos amostrais.  

Em seguida, os estimadores são encontrados resolvendo a equação (quando houver apenas 1 parâmetro) ou 
o sistema de equações (quando houver mais parâmetros). 

Gabarito: A 

 

(2007 – TCE/RO – Adaptada) Seja (y1, y2, y3, y4) uma amostra aleatória independente e identicamente 
distribuída, de tamanho n = 4, extraída de uma população cuja característica estudada possui distribuição de 
probabilidade 𝑓𝑌(𝑦, 𝜃) = { 1 𝜃⁄ , 0 ≤ 𝑦 ≤ 𝜃0, 𝑐𝑎𝑠𝑜 𝑐𝑜𝑛𝑡𝑟á𝑟𝑖𝑜} 

Se a amostra selecionada foi (6, 2, 14, 8), a estimativa do parâmetro 𝜃 pelo método dos momentos é: 

a) 7 

b) 7,5 



 

c) 14 

d) 15 

e) 14,5 

Comentários: 

Para calcular o estimador pelo método dos momentos, igualamos os momentos amostrais aos momentos 
teóricos: 𝜇𝑘 = 𝑚𝑘 

Ou seja, o primeiro momento teórico, que é a esperança (ou média populacional), é igual à média amostral: 

𝑋̅ = ∑ 𝑋𝑛 = 6 + 2 + 14 + 84 = 304 = 7,5 

Pela função densidade fornecida, podemos identificar que se trata de uma distribuição uniforme, no 
intervalo (0, 𝜃).  

A média dessa distribuição é a média aritmética dos extremos: 

𝜇 = 0 + 𝜃2 = 𝜃2 

Igualando os dois momentos, temos: 𝜃𝑀𝑀̂2 = 7,5 

𝜃𝑀𝑀̂ = 15 

Resposta: D 

 

Método da Máxima Verossimilhança 

Para estimar o parâmetro populacional desejado, o método da máxima verossimilhança busca a estimativa 

para a qual a probabilidade de se obter os valores observados é a maior possível.  

 

Em outras palavras, suponha que as observações tenham sido 𝑋1, 𝑋2, … , 𝑋𝑛.  

Nesse caso, considerando o estimador de máxima verossimilhança, a probabilidade associada às 

observações 𝑋1, 𝑋2, … , 𝑋𝑛 é maior do que se considerássemos qualquer outro estimador. 

 

Esse método terá uma função diferente, de acordo com a distribuição da população.  

Victor
Destacar



 

 

O estimador de máxima verossimilhança para um parâmetro 𝜃 é calculado a partir de uma 
função de probabilidade conhecida dependente desse parâmetro 𝑓(𝜃, 𝑥) e das 
observações de uma amostra aleatória 𝑥1, 𝑥2, … , 𝑥𝑛.  
Para calcular o estimador, precisamos da função de máxima verossimilhança 𝐿(𝜃, 𝑥𝑖), 
dada pelo produto da função de probabilidade, aplicada para cada resultado da amostra 
(função densidade conjunta):  𝐿(𝜃, 𝑥𝑖) = ∏ 𝑓(𝜃, 𝑥𝑖)𝑛𝑖=1 = 𝑓(𝜃, 𝑥1) × 𝑓(𝜃, 𝑥2) × … × 𝑓(𝜃, 𝑥𝑛)  

O estimador de máxima verossimilhança será aquele que maximizar essa função. Para isso, 
derivamos a função e a igualamos a zero.  

Normalmente, é mais simples trabalhar com o logaritmo natural da função ln 𝐿(𝜃, 𝑥𝑖). 

 

Para uma variável com distribuição normal, o estimador de máxima verossimilhança (EMV) para a média é: 𝜇𝑀𝑉̂ = ∑ 𝑋𝑖𝑛𝑖=1𝑛 = 𝑿̅ 

 

Ou seja, para uma população com distribuição normal, a média amostral é o estimador de 

máxima verossimilhança (EMV) para a média populacional.  

 

E o EMV para a variância, para uma distribuição normal, é: 𝜎𝑀𝑉2̂ = ∑ (𝑋𝑖𝑛𝑖=1 − 𝑋̅)2𝒏  

Esse é o mesmo estimador obtido pelo método dos momentos, que é tendencioso: 

𝐸(𝜎̂𝑀𝑉2 ) ≠ 𝜎2  
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Para uma variável aleatória com distribuição de Poisson, o estimador de máxima verossimilhança (EMV) 

também é a média amostral: 

𝜆𝑀𝑉̂ = ∑ 𝑋𝑖𝑛𝑖=1𝑛 = 𝑿̅ 

Por exemplo, vamos supor que queiramos estimar o número médio (𝜆) de pessoas que chegam em um ponto 

de ônibus por hora, considerando que essa variável segue distribuição de Poisson.  

Para isso, vamos considerar uma amostra de 𝑛 = 6 horas (ou seja, vamos ficar 6 horas observando o ponto 

de ônibus e anotando o número de pessoas que chegam a cada hora).  

Vamos supor que os valores observados sejam os seguintes: 

{10, 12, 15, 10, 8, 5} 

Para estimar o parâmetro 𝜆 pelo método de máxima verossimilhança, calculamos a média amostral: 

𝜆𝑀𝑉̂ = 𝑿̅ = ∑ 𝑋𝑖𝑛𝑖=1𝑛 = 10 + 12 + 15 + 10 + 8 + 56 = 606 = 10 

Ou seja, a estimativa é que chegam, em média, 10 pessoas por hora nesse ponto de ônibus. 

 

Para uma variável com distribuição exponencial, a média é o inverso do parâmetro: 𝐸(𝑋) = 1𝜆, então a 

estimativa de máxima verossimilhança para o parâmetro 𝜆 é o inverso da média amostral: 

𝜆𝑀𝑉̂ = 1𝑿̅ 

Por exemplo, vamos supor que queiramos estimar o tempo de duração de uma lâmpada incandescente. 

Foram selecionadas 𝑛 = 5 lâmpadas com as seguintes durações (em horas): 

{50, 52, 46, 48, 54} 

A média dessa amostra é: 

𝑿̅ = ∑ 𝑋𝑖𝑛𝑖=1𝑛 = 50 + 52 + 46 + 48 + 545 = 2505 = 50 

Logo, o parâmetro estimado dessa distribuição, pelo método da máxima verossimilhança, é: 

𝜆𝑀𝑉̂ = 1𝑿̅ = 150 = 0,02 𝑝𝑜𝑟 ℎ𝑜𝑟𝑎 

 



 

 

Vamos efetivamente calcular o estimador de máxima verossimilhança para a distribuição 
exponencial. A f.d.p. dessa variável é: 𝑓(𝜃, 𝑥) = 𝜃. 𝑒−𝜃.𝑥  

A função de máxima verossimilhança 𝐿(𝜃, 𝑥𝑖) corresponde ao produto da função de 
probabilidade, aplicada para cada resultado da amostra:  𝐿(𝜃, 𝑥𝑖) = ∏ 𝑓(𝜃, 𝑥𝑖)𝑛𝑖=1 = 𝑓(𝜃, 𝑥1) × 𝑓(𝜃, 𝑥2) × … × 𝑓(𝜃, 𝑥𝑛)  𝐿(𝜃, 𝑥𝑖) = ∏ 𝜃. 𝑒−𝜃.𝑥𝑖𝑛𝑖=1   

Para simplificar, vamos trabalhar com o logaritmo natural dessa função: ln 𝐿(𝜃, 𝑥𝑖) = ln(∏ 𝜃. 𝑒−𝜃.𝑥𝑖𝑛𝑖=1 )  

O logaritmo do produto corresponde à soma dos logaritmos (ln 𝑎. 𝑏 = ln 𝑎 + ln 𝑏): ln 𝐿(𝜃, 𝑥𝑖) = ∑ ln(𝜃. 𝑒−𝜃.𝑥𝑖) = ∑ ln 𝜃𝑛𝑖=1𝑛𝑖=1 + ∑ ln 𝑒−𝜃.𝑥𝑖𝑛𝑖=1   

Sabendo que o logaritmo da potência é igual ao produto do logaritmo (ln 𝑎𝑥 = 𝑥. ln 𝑎) e 
que ln 𝑒 = 1, temos: ln 𝐿(𝜃, 𝑥𝑖) = ∑ ln 𝜃𝑛𝑖=1 + ∑ −𝜃𝑥𝑖𝑛𝑖=1 = 𝑛. ln 𝜃 − 𝜃 ∑ 𝑥𝑖𝑛𝑖=1   

Agora, igualamos a derivada dessa função a zero (equação de log-verossimilhança): 

𝜕 ln 𝐿(𝜃,𝑥𝑖)𝜕𝜃 = 0  

Pontue-se que a derivada de ln 𝑥 é 
1𝑥: 

𝑛 × 1𝜃 − ∑ 𝑥𝑖𝑛𝑖=1 = 0  

𝑛𝜃 = ∑ 𝑥𝑖𝑛𝑖=1   

𝜃 = 𝑛∑ 𝑥𝑖𝑛𝑖=1 = 1𝑋̅  

Que é justamente o estimador da distribuição exponencial! 



 

Para uma variável aleatória com distribuição de Bernoulli, o estimador de máxima verossimilhança para 𝑝 é 

a proporção amostral (que segue a mesma definição de média amostral): 𝑝𝑀𝑉̂ = ∑ 𝑋𝑖𝑛𝑖=1𝑛 = 𝒑̂ 

Por exemplo, vamos supor que queiramos estimar a proporção 𝑝 de peças defeituosas produzidas por uma 

fábrica. Para isso, foi selecionada uma amostra de 𝑛 = 10 elementos que apresentou o seguinte resultado 

(em que 1 representa o defeito e 0 representa a peça boa): 

{0, 0, 1, 0, 0, 0, 0, 1, 0, 0} 

O estimador de máxima verossimilhança para essa distribuição é a proporção amostral: 𝑝𝑀𝑉̂ = ∑ 𝑋𝑖𝑛𝑖=1𝑛 = 0 + 0 + 1 + 0 + 0 + 0 + 0 + 1 + 0 + 010 = 210 = 0,2 

 

Para uma distribuição geométrica, que representa o número de tentativas até o primeiro sucesso, a média 

é o inverso da probabilidade de sucesso: 𝐸(𝑋) = 1𝑝, então o estimador de máxima verossimilhança para a 

proporção 𝑝 é o inverso da média amostral: 𝑝𝑀𝑉̂ = 𝑛∑ 𝑋𝑖𝑛𝑖=1 = 1𝑿̅ 

Vamos supor que 5 pessoas estejam jogando para ver quem consegue primeiro a face CARA lançando uma 

mesma moeda viciada (não equilibrada). Os resultados foram os seguintes: 

{3, 4, 2, 5, 1} 

A média amostral desses resultados é: 𝑿̅ = ∑ 𝑋𝑖𝑛𝑖=1𝑛 = 3 + 4 + 2 + 5 + 15 = 155 = 3 

Logo, a probabilidade de obter a face CARA nessa moeda, estimada pelo método da máxima verossimilhança, 

é: 𝑝𝑀𝑉̂ = 1𝑿̅ = 13 

 

Para uma variável uniforme no intervalo (0, 𝜃), o estimador de máxima verossimilhança para 𝜃 é o maior 

valor observado na amostra. (Observe como os estimadores são diferentes pelos diferentes métodos: 

lembra que o estimador de 𝜃 nesse caso pelo método dos momentos é o dobro da média amostral?) 
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(CESPE/2015 – Telebras) Considerando que os principais métodos para a estimação pontual são o método 
dos momentos e o da máxima verossimilhança, julgue o item a seguir. 

Para a distribuição normal, o método dos momentos e o da máxima verossimilhança fornecem os mesmos 
estimadores aos parâmetros μ e σ. 

Comentários: 

Para uma distribuição normal, o estimador da média, segundo o método da máxima verossimilhança, é a 
média amostral, 𝑋̅, o mesmo estimador obtido pelo método dos momentos. E o estimador da variância, 

segundo o método da máxima verossimilhança, para uma população normal, é  𝜎2̂ = 1𝑛 ∑ (𝑥𝑖𝑛𝑖=1 − 𝑥̅)2, que 

também é o mesmo estimador obtido pelo método dos momentos. 

Gabarito: Certo. 

 

(CESPE/2015 – Telebras) Considerando que os principais métodos para a estimação pontual são o método 
dos momentos e o da máxima verossimilhança, julgue o item a seguir. 

O estimador da máxima verossimilhança para a variância da distribuição normal é expresso por   𝜎2̂ = 1𝑛 ∑ (𝑥𝑖𝑛𝑖=1 − 𝑥̅)2 e este estimador é não viciado. 

Comentários: 

De fato, o estimador 𝜎2̂ = 1𝑛 ∑ (𝑥𝑖𝑛𝑖=1 − 𝑥̅)2 é o estimador de máxima verossimilhança para a variância de 

uma população com distribuição normal, porém esse estimador é viciado. 

Gabarito: Errado. 

 

(CESPE/2016 – TCE/PA) Uma amostra aleatória com n = 16 observações independentes e identicamente 
distribuídas (IID) foi obtida a partir de uma população infinita, com média e desvio padrão desconhecidos e 
distribuição normal. Tendo essa informação como referência inicial, julgue o seguinte item. 

Caso, em uma amostra aleatória de tamanho n = 4, os valores amostrados sejam A = {2, 3, 0, 1}, a estimativa 

de máxima verossimilhança para a variância populacional será igual a 
53. 

Comentários: 

A estimativa de máxima verossimilhança para a variância de uma população normal, é: 𝜎𝑀𝑉2̂ = ∑ (𝑋𝑖𝑛𝑖=1 − 𝑋̅)2𝑛  

Para calculá-la, precisamos primeiramente da média amostral, 𝑋̅: 𝑋̅ = ∑ 𝑋𝑖𝑛 = 2 + 3 + 0 + 14 = 64 = 1,5 



 

A estimativa é, portanto: 𝜎𝑀𝑉2̂ = (2 − 1,5)2 + (3 − 1,5)2 + (0 − 1,5)2 + (1 − 1,5)24 = (0,5)2 + (1,5)2 + (−1,5)2 + (−0,5)24  𝜎𝑀𝑉2̂ = 0,25 + 2,25 + 2,25 + 0,254 = 54 

Observe que a questão exigiu conhecimento justamente da diferença entre o estimador de máxima 
verossimilhança e o estimador que utilizamos (não tendencioso). 

Gabarito: Errado. 

 

(FGV/2022 – SEFAZ/ES) Uma amostra aleatória simples de tamanho 4 de uma população normalmente 
distribuída forneceu os seguintes dados: 

2,1   3,8    3,1    3,0 

As estimativas de máxima verossimilhança da média e da variância populacionais são respectivamente 

a) 3,0 e 0,486 

b) 2,8 e 0,386 

c) 2,8 e 0,535 

d) 3,0 e 0,544 

e) 3,0 e 0,365 

Comentários: 

Essa questão trabalha com o método de máxima verossimilhança para estimar a média e a variância de uma 
população com distribuição normal.  

Em relação à média, temos a média amostral: 𝑋̅ = ∑ 𝑥𝑛 = 2,1 + 3,8 + 3,1 + 3,04 = 124 = 3 

Já a estimativa de máxima verossimilhança para a variância é o estimador tendencioso, em que dividimos a 
soma dos quadrados dos desvios por 𝑛, e não por 𝑛 − 1: 𝜎𝑀𝑉2̂ = ∑(𝑥𝑖 − 𝑋̅)2𝒏  

Para calcular o numerador, vamos construir uma tabela com os desvios: 

 

E o numerador é a soma dos valores da última linha: ∑(𝑥𝑖 − 𝑋̅)2 = 0,81 + 0,64 + 0,01 + 0 = 1,46 

Para calcular o estimador da variância, dividimos esse resultado por 𝑛 = 4: 



 

𝜎𝑀𝑉2̂ = 1,464 = 0,365 

Gabarito: E 

 

(FGV/2017 – IBGE) Seja X uma variável aleatória com função de probabilidade dada por 𝑃(𝑋 = 𝑥) = 𝑝. (1 −𝑝)𝑥−1 para x = 1, 2, 3,..., onde p é um parâmetro desconhecido. Dispondo de uma amostra de tamanho n, 
x1, x2, x3,...., xn, o estimador de Máxima Verossimilhança de p é: 

a) 𝑝̂ = ∑ 𝑥𝑖 
b) 𝑝̂ = 1∑ 𝑥𝑖 
c) 𝑝̂ = ∑ 𝑥𝑖𝑛  

d) 𝑝̂ = 𝑛∑ 𝑥𝑖 
e) 𝑝̂ = √∑ 𝑥𝑖𝑛

 

Comentários: 

Podemos observar que a função de probabilidade fornecida na questão é de uma variável com distribuição 
geométrica. Para essa variável, o estimador de máxima verossimilhança é o inverso da média amostral:  𝑝𝑀𝑉̂ = 𝑛∑ 𝑋𝑖𝑛𝑖=1 = 1𝑿̅ 

Gabarito: D 

 

(CESPE/2013 – MPU) Suponha que x1, ..., xn seja uma sequência de cópias independentes retiradas de uma 

distribuição com função densidade de probabilidade 𝑓(𝑥) = 𝛼. 𝑥. 𝑒−𝛼𝑥22 , em que x ≥ 0 e 𝛼 > 0 é seu 
parâmetro. Com base nessas informações, julgue o item a seguir.  

Supondo que (x1, ..., x5) = (3, 4, 4, 6, 6), a estimativa de máxima verossimilhança do parâmetro 𝛼 é inferior a 
1/10. 

Comentários: 

O primeiro passo é calcular a função de máxima verossimilhança 𝐿(𝛼, 𝑥𝑖), dada pelo produto da função de 
probabilidade, aplicada para cada resultado da amostra:  𝐿(𝜃, 𝑥𝑖) = ∏ 𝑓(𝛼, 𝑥𝑖)𝑛

𝑖=1 = 𝑓(𝛼, 𝑥1) × 𝑓(𝛼, 𝑥2) × … × 𝑓(𝛼, 𝑥𝑛) 

Para o nosso caso, temos: 𝐿(𝛼, 𝑥𝑖) = ∏ 𝛼. 𝑥𝑖 . 𝑒−𝛼𝑥22𝑛
𝑖=1  

Agora, calculamos o logaritmo natural dessa função: 



 

ln 𝐿(𝛼, 𝑥𝑖) = ln (∏ 𝛼. 𝑥𝑖 . 𝑒−𝛼𝑥22𝑛
𝑖=1 ) 

O logaritmo do produto corresponde à soma dos logaritmos (ln 𝑎. 𝑏 = ln 𝑎 + ln 𝑏): ln 𝐿(𝛼, 𝑥𝑖) = ∑ ln (𝛼. 𝑥𝑖 . 𝑒−𝛼𝑥22 )𝑛
𝑖=1 = ∑ ln 𝛼𝑛

𝑖=1 + ∑ ln 𝑥𝑖𝑛
𝑖=1 + ∑ ln 𝑒−𝛼𝑥22𝑛

𝑖=1  

Sabendo que o logaritmo da potência é igual ao produto do logaritmo (ln 𝑎𝑥 = 𝑥. ln 𝑎) e que ln 𝑒 = 1: ln 𝐿(𝛼, 𝑥𝑖) = ∑ ln 𝛼𝑛
𝑖=1 + ∑ ln 𝑥𝑖𝑛

𝑖=1 + ∑ −𝛼𝑥22 ln 𝑒𝑛
𝑖=1 = 𝑛. ln 𝛼 + ∑ ln 𝑥𝑖𝑛

𝑖=1 − 𝛼2 ∑ 𝑥2𝑛
𝑖=1  

E a derivada dessa função em relação a 𝛼 é: 𝜕 ln 𝐿(𝛼, 𝑥𝑖)𝜕𝛼 = 𝑛 × 1𝛼 − 12 × ∑ 𝑥2𝑛
𝑖=1 = 𝑛𝛼 − ∑ 𝑥2𝑛𝑖=12  

Agora, essa função a zero (equação de log-verossimilhança): 𝑛𝛼 − ∑ 𝑥2𝑛𝑖=12 = 0 𝑛𝛼 = ∑ 𝑥2𝑛𝑖=12  𝛼 = 2𝑛∑ 𝑥2𝑛𝑖=1  

Encontramos o estimador de máxima verossimilhança para 𝛼. Substituindo os resultados da amostra descrita 
no enunciado, temos: 

  𝛼 = 2 × 532 + 42 + 42 + 62 + 62 = 109 + 16 + 16 + 36 + 36 = 10113 

Que é inferior a 1/10. 

Gabarito: Certo. 

 

Método de Mínimos Quadrados 

O Método de Mínimos Quadrados busca a estimativa 𝜃𝑀𝑄̂  que resulta no menor valor para o quadrado das 

diferenças entre os valores observados 𝑋𝑖 e o estimador 𝜃𝑀𝑄̂: 

Min ∑(𝑋𝑖 − 𝜃𝑀𝑄̂)2𝑛
𝑖=1  
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Ou seja, o método busca minimizar o erro quadrático total da amostra. Assim, 𝜃𝑀𝑄̂  é chamado de Estimador 

de Mínimos Quadrados (EMQ) para o parâmetro populacional 𝜃. Esse método é utilizado quando não se 

conhece o tipo de distribuição da variável. 

 

 

O estimador de mínimos quadrados para a média populacional, 𝜇𝑀𝑄̂, é igual à média 

amostral: 𝜇𝑀𝑄̂ = 𝑿̅   

Similarmente, o estimador de mínimos quadrados para a proporção populacional, 𝑝𝑀𝑄̂, é 

a proporção amostral: 𝑝𝑀𝑄̂ = 𝒑̂  

 

 

A média amostral é o estimador para a média populacional obtido pelos métodos dos 

momentos (EMM) e dos mínimos quadrados (EMQ). Se a população tiver distribuição 

normal, a média amostral também é o estimador obtido pelo método da máxima 

verossimilhança (EMV). 

A proporção amostral é o estimador para a proporção populacional obtido pelos métodos 
dos mínimos quadrados (EMQ) e da máxima verossimilhança (EMV).  

O estimador para a variância obtido pelos métodos dos momentos (EMM) e da máxima 

verossimilhança (EMV) é tendencioso.  
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ESTIMAÇÃO INTERVALAR 

Após obtermos uma estimativa para o parâmetro populacional desejado (estimação pontual), calculamos o 

intervalo dentro do qual esse parâmetro deve variar. Ou seja, na estimação intervalar (ou estimação por 

intervalos), a estimativa deixa de ser um ponto (isto é, um valor único) e passa a ser um intervalo. Esse 

intervalo, chamado intervalo de confiança, fornece uma noção de precisão da estimativa. 

O intervalo de confiança é construído em torno da estimativa pontual 𝜃, indicado da forma (𝜃 − 𝐸; 𝜃 + 𝐸) 

ou como 𝜃 ± 𝐸. Esse intervalo indica que o parâmetro populacional 𝜃 deve estar entre o limite inferior, 𝜃 −𝐸, e o limite superior 𝜃 + 𝐸. O valor 𝐸 corresponde à metade da amplitude do intervalo, podendo ser 

chamado de margem de erro, erro de precisão, erro máximo.  

 

Como assim o parâmetro “deve” estar no intervalo? É possível que o parâmetro 𝜃 esteja fora desse intervalo? 

Por se tratar de um intervalo construído em torno de uma variável aleatória, sim! Em Inferência Estatística, 

sempre convivemos com um nível de dúvida. Mas, felizmente, é possível dimensionar esse nível de dúvida.  

Mais precisamente, atribuímos ao intervalo um nível (ou grau) de confiança 𝟏 − 𝜶, indicado em forma 

percentual, por exemplo, 95%. A interpretação desse nível é a seguinte: repetindo o procedimento para a 

construção do intervalo muitas vezes, em (1 − 𝛼)% (por exemplo, 95%) dessas vezes, o intervalo construído 

incluirá o parâmetro populacional.  

Ou seja, o nível de confiança é uma probabilidade. Porém, não se trata de uma probabilidade de o 

parâmetro populacional pertencer ao intervalo, uma vez que o parâmetro populacional é fixo (embora seja 

desconhecido). O nível de confiança representa a probabilidade de o intervalo, o qual é construído a partir 

de variáveis aleatórias, incluir o parâmetro populacional. 

 

Quanto maior o nível de confiança (1 − 𝛼), ou seja, quanto maior a certeza necessária de que o intervalo 

calculado inclui o parâmetro populacional desejado, maior terá que ser o tamanho do intervalo, se 

mantivermos todas as demais características iguais. Logo, maior será a margem de erro (isto é, a semi-

amplitude do intervalo).  

Se a margem de erro não puder aumentar, então teremos que aumentar o tamanho da amostra. Ou seja, 

para termos uma estimativa mais precisa (com menor margem de erro e/ou com maior nível de confiança), 

teremos que investigar um número maior itens. Veremos as fórmulas dessas relações adiante, mas é 

desejável entender essa lógica por trás delas. 

 

E o valor de 𝛼? 𝛼 é chamado de nível de significância e corresponde à probabilidade dos valores que não 

estão no intervalo de confiança. Falaremos bastante dele na aula de Teste de Hipóteses. 

Nas próximas seções, veremos como construir o intervalo de confiança para os parâmetros populacionais 

(média, proporção e variância), a partir dos respectivos estimadores.  
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(CESPE/2019 – TJ/AM) Acerca de métodos usuais de estimação intervalar, julgue o item subsecutivo. Um 
intervalo de confiança de 95% descreve a probabilidade de um parâmetro estar entre dois valores numéricos 
na próxima amostra não aleatória a ser coletada. 

Comentários: 

Existem alguns erros neste item. A estimação, de modo geral, trabalha com amostras aleatórias já coletadas. 
Além disso, não se trata de uma probabilidade de o parâmetro estar entre dois valores, mas sim de os dois 
valores englobarem o parâmetro. 

Gabarito: Errado. 

 

(CESPE/2019 – TJ/AM) Acerca de métodos usuais de estimação intervalar, julgue o item subsecutivo. É 
possível calcular intervalos de confiança para a estimativa da média de uma distribuição normal, 
representativa de uma amostra aleatória. 

Comentários: 

De fato, é possível calcular intervalos de confiança para a média, a partir de uma amostra aleatória. 

Gabarito: Certo. 

 

(FGV/2019 – DPE-RJ – Adaptada) Para a aplicação de técnica de estimação por intervalos, há uma série de 
requisitos e recomendações. Sobre essas condições, julgue os seguintes. 

I – A amplitude do intervalo varia positivamente com o grau de confiança e o tamanho da amostra. 

II – A ideia da técnica é a da construção de um intervalo ao qual seja possível associar uma probabilidade, 
justamente aquela de que o parâmetro de interesse esteja nele contido. 

III – É inquestionável que, antes da seleção da amostra, o grau de confiança é a probabilidade de o intervalo 
teórico conter de fato o verdadeiro valor do parâmetro de interesse. 

Comentários: 

Em relação ao item I, quanto maior o nível de confiança, maior será a amplitude do intervalo; porém, quanto 
maior o tamanho da amostra, mais precisa será a estimativa e, portanto, menor será a amplitude do intervalo 
(e a margem de erro). Logo, o item I está errado. 

Em relação ao item II, não se trata de uma probabilidade de o parâmetro de interesse (que é fixo) estar 
contido no intervalo construído, mas sim de o intervalo construído conter o parâmetro de interesse.  

Em relação ao item III, o grau de confiança (1 − 𝛼), de fato, representa a probabilidade de o intervalo conter 
o parâmetro de interesse. 

Resposta: Itens I e II Errados; Item III Certo. 



 

Intervalo de Confiança para a Média 

Para estimarmos a média populacional, utilizamos a média amostral como estimador. Porém, para 

construirmos um intervalo de confiança em torno desse estimador, é necessário saber se a variância 

populacional é conhecida ou não. 

 

População com Variância Conhecida 

Se a população tiver variância conhecida 𝜎2 e distribuição normal (ou se apresentar outra distribuição, mas 

o tamanho da amostra for suficientemente grande), a média amostral 𝑋̅ terá distribuição normal. 

Sendo assim, vamos considerar a curva normal para construir um intervalo que delimite uma probabilidade 

de 𝟏 − 𝜶 em torno de 𝑿̅. Ou seja, devemos encontrar os valores de 𝑋 que delimitam uma área sob a curva 

normal, correspondente a 1 − 𝛼: 

 

 

 

Para encontrar os limites, devemos utilizar a tabela normal padrão. Logo, precisamos utilizar a transformação 

para a distribuição normal padrão 𝑍 (com média 0 e desvio padrão igual a 1): 𝑧 = 𝑣𝑎𝑙𝑜𝑟 𝑝𝑟𝑜𝑐𝑢𝑟𝑎𝑑𝑜 − 𝒎é𝒅𝒊𝒂 𝑑𝑎 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑖çã𝑜𝒅𝒆𝒔𝒗𝒊𝒐 𝒑𝒂𝒅𝒓ã𝒐 𝑑𝑎 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑖çã𝑜  

Aqui, os valores procurados são 𝑋̅ + 𝐸 e 𝑋̅ − 𝐸; a média da distribuição é 𝑋̅ e o desvio padrão é o erro padrão 

de 𝑋̅: 𝐸𝑃(𝑋̅) = 𝜎√𝑛 

Ou seja, o limite superior do intervalo de confiança,  𝑋̅ + 𝐸, é calculado como: 𝑧 = 𝑋̅ + 𝐸 − 𝑋̅𝜎√𝑛 = 𝐸 𝜎√𝑛  

𝐸 = 𝑧. 𝜎√𝑛  

1 − 𝛼 

𝑋̅ 𝑋 + 𝐸 𝑋 − 𝐸 
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O intervalo de confiança, 𝑋̅ ± 𝐸, é, portanto: 

(𝑋̅ − 𝑧. 𝜎√𝑛 ; 𝑋̅ + 𝑧. 𝜎√𝑛)  

Esses limites podem ser chamados de valores críticos.  

 

E qual é o valor de 𝑧? Depende do nível de confiança.  

Por exemplo, suponha um nível de confiança 1 − 𝛼 = 95% (normalmente, a prova fornece o valor do nível 

de confiança mesmo, ou seja, o valor de 1 − 𝛼).  

Para que toda a região indicada no gráfico acima delimite uma área de 1 − 𝛼 = 95%, então a área entre 0 

e z deve ser a metade: 𝑃(0 < 𝑍 < 𝑧) = 0,475.  

 

Z ... 0,05 0,06 0,07 ... 

... ... ... ... ... ... 

1,8 ... 0,4678 0,4686 0,4693 ... 

1,9 ... 0,4744 0,475 0,4756 ... 

2 ... 0,4798 0,4803 0,4808 ... 

... ... ... ... ... ... 

 

Pela tabela da normal padrão, observamos que 𝑧 = 1,96. Logo, se o nível de confiança for de 95%, o intervalo 

construído será: 𝑋̅ ± 1,96. 𝜎√𝑛 

 

Agora podemos visualizar o raciocínio que construímos no início desta seção: quanto maior o nível de 

confiança, maior será o valor de 𝒛 e, portanto, maior o tamanho do intervalo de confiança (e a margem de 

erro), mantendo as demais características constantes.  

E quanto maior o tamanho da amostra analisada, menor será o tamanho do intervalo, mantendo as demais 

características constantes. Além disso, também podemos observar que quanto maior a variabilidade da 

população, medida pelo desvio padrão (𝜎), maior será o intervalo.  

 

Para exemplificar os cálculos, vamos supor que uma população com média desconhecida e variância igual 𝜎2 = 9 (portanto, o desvio padrão é 𝜎 = √𝜎2 = √9 = 3). Para estimar a média, foi considerada uma 

população de 36 indivíduos. Nesse caso, a margem de erro, a um nível de 1 − 𝛼 = 95% de confiança (em 

que 𝑧 = 1,96), é dada por: 𝐸 = 1,96. 𝜎√𝑛 = 1,96. 3√36 = 1,96. 36 = 1,962 = 0,98 
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Supondo que a média amostral calculada foi 𝑋̅ = 10, o intervalo de confiança é dado por: 𝑋̅ + 𝐸 = 10 + 0,98 = 10,98 𝑋̅ − 𝐸 = 10 − 0,98 = 9,02 (9,02; 10,98) 

 

Note que a probabilidade associada aos valores não incluídos no intervalo de confiança é complementar, ou 

seja, igual a 𝛼. Por se tratar de uma distribuição simétrica, a probabilidade associada aos valores superiores 

ao intervalo é 𝛼 2⁄  e aos valores inferiores é também 𝛼 2⁄ : 

 

 

 

Assim, é comum utilizar a notação 𝑧𝛼 2⁄  para indicar o limite do intervalo na distribuição normal padrão (no 

nosso exemplo, temos 𝑧𝛼 2⁄ = 1,96).  

 

Tamanho Amostral 

Pode ser que a questão forneça, além do nível de confiança (1 − 𝛼), o valor do erro máximo, ou seja, o valor 

de 𝐸, e indague a respeito do tamanho necessário da amostra 𝑛. Para isso, podemos utilizar a mesma 

fórmula do erro que vimos há pouco: 𝐸 = 𝑧. 𝜎√𝑛 

Lembre-se que o valor de 𝑧 é obtido a partir do nível de confiança desejado e que o erro corresponde à 

metade da amplitude do intervalo de confiança.  

Reorganizando essa fórmula, temos: 

𝑛 = (𝑧. 𝜎𝐸)2
  

Podemos observar que, quanto maior o nível de confiança desejado (𝑧), maior será o tamanho amostral; e 

quanto maior o erro máximo (𝐸), menor será o tamanho amostral. 

1 − 𝛼 

𝑋̅ 𝑋 + 𝐸 𝑋 − 𝐸 

𝛼 2⁄  𝛼 2⁄  
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Para o exemplo que vimos anteriormente, em que obtivemos uma margem de erro de 𝐸 = 0,98, com uma 

amostra de 𝑛 = 36. Vamos supor que o erro máximo tolerável seja a metade, ou seja, 𝐸 = 0,49. 

Considerando que os demais valores permaneceram constantes, ou seja, 𝑧 = 1,96 e 𝜎 = 3, o tamanho da 

nova amostra 𝑛2, necessário para obter a margem de erro desejada é: 

𝑛2 = (𝑧. 𝜎𝐸)2 = (1,96 × 30,49)2 = (4 × 3)2 = (12)2 = 144 

Note que o tamanho da amostra quadruplicou para que a margem de erro fosse reduzida à metade, 

mantendo o mesmo nível de confiança, para a mesma população (portanto, o mesmo desvio padrão).  

Na verdade, poderíamos saber que isso aconteceria, sem conhecer os dados do problema. Vejamos: a 

amostra inicial é dada por: 𝑛1 = (𝑧. 𝜎𝐸)2
 

E a nova amostra necessária para que o erro se reduza à metade é: 

𝑛2 = (𝑧. 𝜎𝐸 2⁄ )2 = (𝑧. 𝜎𝐸 . 2)2 = 4. (𝑧. 𝜎𝐸)2 = 4. 𝑛1 

                                                       𝑛1 

 

Pontue-se que tais fórmulas pressupõem uma população infinita ou amostras extraídas com reposição. Caso 

a população seja finita e as amostras extraídas sem reposição, então será necessário aplicar o fator de 

correção para população finita.  

Para isso, devemos multiplicar a fórmula do erro pelo fator √𝑁−𝑛𝑁−1, o que influencia no tamanho da amostra: 

𝐸 = 𝑧. 𝜎√𝑛 . √𝑁 − 𝑛𝑁 − 1 

 

 

(CESPE 2020/TJ-PA) Uma equipe de engenheiros da qualidade, com vistas a estimar vida útil de determinado 
equipamento, utilizou uma amostra contendo 225 unidades e obteve uma média de 1.200 horas de duração, 
com desvio padrão de 150 horas. 

Considerando-se, para um nível de confiança de 95%, z = 1,96, é correto afirmar que a verdadeira duração 
média do equipamento, em horas, estará em um intervalo entre  
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a) 1.190,00 e 1.210,00.  

b) 1.185,20 e 1.214,80.  

c) 1.177,50 e 1.222,50.  

d) 1.180,40 e 1.219,60.  

e) 1.174,20 e 1.225,80. 

Comentários: 

Vamos listar as informações do enunciado: 𝑀é𝑑𝑖𝑎 𝑎𝑚𝑜𝑠𝑡𝑟𝑎𝑙 → 𝑋̅ = 1.200 𝐸𝑠𝑐𝑜𝑟𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑑𝑜 𝑎𝑜 𝑛í𝑣𝑒𝑙 𝑑𝑒 𝑐𝑜𝑛𝑓𝑖𝑎𝑛ç𝑎 → 𝓏 = 1,96 𝐷𝑒𝑠𝑣𝑖𝑜 𝑝𝑎𝑑𝑟ã𝑜 → 𝜎 = 150 𝑇𝑎𝑚𝑎𝑛ℎ𝑜 𝑑𝑎 𝑎𝑚𝑜𝑠𝑡𝑟𝑎 → 𝑛 = 225 

Agora, podemos apenas aplicar na fórmula do intervalo de confiança para a média (como a questão já 
forneceu o valor de 𝓏, não precisamos consultar a tabela para obtê-lo, a partir do nível de confiança): 𝑋̅ ± 𝓏 × 𝜎√𝑛 

1200 ± 1,96 × 150√225 

1200 ± 1,96 × 15015  1200 ± 1,96 × 10 1200 ± 19,6 

Logo, o intervalo é (1200 − 19,6 = 1180,4;  1200 + 19,6 = 1219,6) 

Gabarito: D. 

 

(FGV/2022 – TJDFT) Uma grande amostra foi selecionada para estimar o tempo médio de tramitação de um 
tipo particular de ação em uma comarca. Essa amostra demonstrou que o intervalo bilateral de 95% de 
confiança para o tempo médio de tramitação estava entre 8 e 10 anos.  

Com o objetivo de aumentar a precisão dessa estimativa, um estatístico resolveu diminuir a confiança para 
85%. O novo intervalo de confiança passou a ser, aproximadamente, igual a: 

a) 9 ± 0,26 

b) 9 ± 0,34 

c) 9 ± 0,72 

d) 9 ± 0,88 

e) 9 ± 1,44 

Nessa prova, foi fornecida a tabela normal padrão da forma P(Z > Z0), parcialmente replicada a seguir. 



 

 

Comentários: 

A questão informa que para um nível de 95% de confiança, o intervalo para estimar a média foi (8; 10), ou 
seja, 9 ± 1. O erro portanto é dado por: 𝐸 = 𝓏95%. 𝜎√𝑛 = 1 

E a questão pede o novo intervalo, quando reduzimos o nível de confiança para 85%, sabendo que os demais 
parâmetros continuarão os mesmos.  

Assim, precisamos comparar o valor de z para 95% de confiança e o valor de z para 85% de confiança. 

A prova apresenta a tabela normal da forma P(Z > Z0). Para um nível de 95% de confiança, resta 2,5% abaixo 
do limite inferior do intervalo e 2,5% acima do limite superior do intervalo, logo, precisamos do valor de Z0 
associado a uma probabilidade P(Z > Z0) = 2,5% = 0,025. Pela tabela fornecida, temos que Z0 = 1,96 ≅ 2. 

Para um nível de 85% de confiança, temos 7,5% (metade) abaixo do limite inferior e 7,5% acima do limite 
superior, logo, precisamos do valor de Z0 associado a uma probabilidade P(Z > Z0) = 7,5% = 0,075. Pela tabela 
fornecida, temos que Z0 = 1,44. 

Agora, vamos calcular a razão entre os valores de z: 𝓏85%𝑧95% ≅ 1,442 = 0,72 

Considerando que o erro é diretamente proporcional ao valor de z, a razão entre os erros segue essa mesma 
proporção: 𝐸85%𝐸95% ≅ 0,72 

Sabendo que o erro a 95% de confiança é igual a 1, então o erro a 85% de confiança é: 𝐸85% ≅ 0,72 × 1 = 0,72 

Logo, o intervalo de confiança é da forma 9 ± 0,72. 

Gabarito: C 

 

(FCC/2014 - TRT/MA) Para responder às questões use, dentre as informações dadas abaixo, as que julgar 
apropriadas.  

 



 

Se Z tem distribuição normal padrão, então: P(Z < 0,25) = 0,599, P(Z < 0,80) = 0,84, P(Z < 1) = 0,841, P(Z < 
1,96) = 0,975, P(Z < 3,09) = 0,999  

Considere X1, X2, ...Xn uma amostra aleatória simples, com reposição, da distribuição da variável X, que tem 
distribuição normal com média µ e variância 36. Seja X a média amostral dessa amostra. O valor de n para 
que a distância entre X e µ seja, no máximo, igual a 0,49, com probabilidade de 95% é igual a: 

a) 256 

b) 225 

c) 400 

d) 144 

e) 576 

Comentários: 

Ao dizer que a distância entre a média amostral (ou seja, estimativa da média populacional) e a média 
populacional seja no máximo igual a 0,49 com probabilidade de 95%, a questão forneceu o erro máximo (𝑋̅ − 𝐸; 𝑋̅ + 𝐸), 𝐸 = 0,49, e o nível de confiança de 95%.  

Para que 95% da distribuição esteja no intervalo (𝑋̅ − 𝐸; 𝑋̅ + 𝐸), 2,5% da distribuição estará acima desse 
intervalo e 2,5% abaixo: 

 

 

Assim, precisamos do valor de z cuja probabilidade P(Z < z) seja igual a 2,5% + 95% = 97,5%.  

Pelos valores fornecidas observamos que z = 1,96. Sabendo que a variância é 𝜎2 = 36, ou seja, o desvio 

padrão é 𝜎 = √𝜎2 = √36 = 6, tendo em vista que o erro é E = 0,49, temos: 𝑛 = (𝑧. 𝜎𝐸)2
 

𝑛 = (1,96. 60,49)2 = (24)2 = 576 

Gabarito: E. 

 

(FGV/2022 – MPE/SC) O tempo, em horas diárias, que homens com idades entre os 40 e 50 anos acessam 
redes sociais segue uma distribuição Normal com média 2,5 e desvio padrão 1,5. Para o mesmo grupo etário 
de mulheres, esse tempo segue também uma distribuição Normal com média 3 e desvio padrão 1. Serão 
retiradas duas amostras casuais e independentes, uma de homens e outra de mulheres.  

95% 

𝑋 𝑋 + 𝐸 𝑋 − 𝐸 

2,5% 2,5% 



 

O tamanho mínimo da amostra da população das mulheres que se pretende com probabilidade pelo menos 
0,95 e cuja diferença em valor absoluto entre a média amostral e a média populacional não exceda 0,1 é, 
aproximadamente: 

a) 20; 

b) 100; 

c) 250; 

d) 385; 

e) 500. 

Comentários: 

Essa questão trabalha com o tamanho amostral, para um intervalo de confiança para a média, com variância 
conhecida: 𝑛 = (𝑧𝐸 . 𝜎)2

 

Em que 𝑧 é o valor da tabela normal padrão associado ao nível de confiança desejado; 𝐸 é a margem de erro 
e 𝜎 é o desvio padrão. 

A questão pede o tamanho mínimo para o tempo das mulheres, em que o desvio padrão é 𝜎 = 1. O 
enunciado informa, ainda, que a probabilidade do intervalo (nível de confiança) é de 95%, logo, z = 1,96. 
Ademais, informa que a diferença máxima entre a média amostral e a média populacional, que corresponde 
à definição de margem de erro, é E = 0,1. Substituindo esses dados na fórmula, temos:  𝑛 = (1,960,1 . 1)2 = (19,6)2 = 384,16 

Logo, o menor tamanho amostral, que corresponde ao menor número inteiro maior que o valor calculado, é 
385. 

Gabarito: D 

 

(CESPE 2016/TCE-PA) Considerando uma população finita em que a média da variável de interesse seja 
desconhecida, julgue o item a seguir. 

Se uma amostra aleatória simples, sem reposição, for obtida de uma população finita constituída por N = 45 
indivíduos, o fator de correção para população finita não será considerado na definição do tamanho da 
amostra para a estimação da média. 

Comentários: 

Quando uma população é finita, é feito um ajuste na equação para as médias amostrais. Esse ajuste é 
chamado fator de correção. Portanto, usamos sim o fator de correção. 

Gabarito: Errado. 

 



 

População com Variância Desconhecida 

Sendo a variância populacional desconhecida, não podemos calcular a variância da média amostral como 𝑉(𝑋̅) = 𝑉(𝑋)𝑛 .  

Então, precisamos estimar a variância populacional, a partir da variância amostral. 

 

O estimador não tendencioso para a variância é: 𝑠2 = ∑ (𝑋𝑖 − 𝑋̅)2𝑛𝑖=1𝑛 − 1  

 

Esse estimador vale para populações infinitas OU amostras extraídas com reposição.  

 

Caso a população seja finita, de tamanho 𝑁, E a amostra seja extraída sem reposição, é necessário aplicar 

o fator de correção, multiplicando o resultado da variância amostral por 
𝑁−𝑛𝑁−1. 

 

Com a estimativa para a variância populacional, calculamos a variância da média amostral (basta substituir 𝜎2 por 𝑠2, na fórmula da variância da média amostral, que conhecemos): 𝑉(𝑋̅) = 𝑠2𝑛  

Logo, o desvio padrão (ou erro padrão) da média amostral será: 

𝐷(𝑋̅) = √𝑉(𝑋̅) = √𝑠2𝑛  

𝐷(𝑋̅) = 𝑠√𝑛 

 

O método para a construção do intervalo de confiança será similar, porém, em vez de considerarmos a 

distribuição normal, utilizaremos a distribuição t-Student, considerando 𝒏 − 𝟏 graus de liberdade.  

 

Pontue-se que essa distribuição é similar à normal, porém mais achatada no centro e com caudas mais largas, 

ou seja, apresenta maior variabilidade.  
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Precisamos utilizar uma outra distribuição, que não a distribuição normal, porque agora a 
variância considerada deixou de ser um valor fixo e passou a ser também uma estimativa, 
o que justifica o uso de uma distribuição com maior variabilidade do que a normal.  

Observe a fórmula da transformação, considerando os estimadores 𝑋̅ e 𝑠2: 

𝑥−𝑋̅√𝑠2   

Se a variância fosse fixa, teríamos a transformação para a normal padrão. Porém, estamos 

dividindo pela raiz da estimativa da variância √𝑠2.  

Vale pontuar que o estimador da variância 𝒔𝟐 tem distribuição qui-quadrado. Com isso em 
mente, compare a fórmula da transformação indicada acima com a definição da variável t-
Student: 𝑇 = 𝑍√𝓧𝒌𝟐𝒌

  

Percebeu a similaridade? Na fórmula da transformação acima, temos uma divisão pela raiz 
de uma distribuição qui-quadrado, assim como na definição da variável de t-Student. 

 

Considerando que 𝑡𝑛−1 representa o valor da tabela da distribuição t-Student padrão (com média igual a 

zero e desvio padrão igual a 1) para 𝑛 − 1 graus de liberdade, em que 𝑛 é o tamanho da amostra, temos: 𝑡𝑛−1 = 𝑋̅ + 𝐸 − 𝑋̅𝑠√𝑛 = 𝐸 𝑠√𝑛  

𝐸 = 𝑡𝑛−1. 𝑠√𝑛  

Ou seja, o erro é calculado assim como fizemos para a população com variância conhecida, apenas 

substituindo a variável da normal padrão pela variável t-Student. O intervalo de confiança será da forma (𝑋̅ − 𝑡𝑛−1. 𝑠√𝑛 ; 𝑋̅ + 𝑡𝑛−1. 𝑠√𝑛). 

 

O valor de 𝒕𝒏−𝟏 também dependerá do nível de confiança e do tamanho da amostra 𝒏.  

Victor
Destacar

Victor
Destacar



 

Por exemplo, suponha o mesmo nível de confiança do nosso exemplo anterior de 1 − 𝛼 = 95% e uma 

amostra de tamanho 𝑛 = 5. Logo, precisamos buscar o valor de 𝑡 considerando 𝑛 − 1 = 4 graus de 

liberdade. Abaixo, inserimos parte da tabela de t-Student, que apresenta os valores da função acumulada, 

ou seja, da forma 𝑃(𝑇 < 𝑡). 

 

 

Se a probabilidade associada ao intervalo de confiança é de 95%, então a probabilidade associada aos valores 

acima e abaixo desse intervalo é de 2,5%. Ou seja, a probabilidade associada aos valores abaixo do valor 

crítico superior é 𝑃(𝑋 < 𝑋̅ + 𝐸) = 95% + 2,5% = 97,5%. 

 

 

 

Assim, devemos buscar o valor de 𝑡8 para o qual 𝑃(𝑇 < 𝑡4) = 0,975. Pela tabela acima, temos 𝑡4 = 2,78. 

Logo, o intervalo será da seguinte forma: 𝑋̅ ± 2,78. 𝑠√5 

O valor de 𝑠 é a raiz quadrada da variância amostral observada. No nosso exemplo anterior, em que 

estimamos a variância da altura populacional, com base em uma amostra de 5 pessoas, calculamos a 

variância amostral em 𝑠2 = 0,0125. Nesse caso, o desvio padrão é dado por:  𝑠 = √𝑠2 = √0,0125 

Portanto, a margem de erro para esse exemplo é: 

𝐸 = 2,78. 𝑠√5 = 2,78. √0,0125√5 = 2,78 × √0,0025 = 2,78 × 0,05 = 0,139 

Para esse mesmo exemplo, a média encontrada foi 𝑋̅ = 1,8. Logo, o intervalo de confiança é: 𝑋̅ + 𝐸 = 1,8 + 0,139 = 1,939 𝑋̅ − 𝐸 = 1,8 − 0,139 = 1,661 (1,661; 1,939) 

95% 

𝑋 𝑋 + 𝐸 𝑋 − 𝐸 

2,5% 2,5% 



 

Pontue-se que o tamanho amostral necessário para se obter determinada margem de erro, é calculado de 

maneira análoga ao caso da variância conhecida, ou seja: 𝐸 = 𝑡𝑛−1. 𝑠√𝑛 

𝒏 = (𝒕𝒏−𝟏. 𝒔𝑬)𝟐
 

 

 

(2019/SEFAZ-BA) Para obter um intervalo de confiança de 90% para a média p de uma população 
normalmente distribuída, de tamanho infinito e variância desconhecida, extraiu-se uma amostra aleatória 
de tamanho 9 dessa população, obtendo-se uma média amostral igual a 15 e variância igual a 16. Considerou-
se a distribuição t de Student para o teste unicaudal tal que a probabilidade P(t - t0) = 0,05, com n graus de 
liberdade. Com base nos dados da amostra, esse intervalo é igual a 

 

a) (12,56; 17,44) 

b) (13,76; 16,24) 

c) (12,47; 17,53) 

d) (12,59; 17,41) 

e) (12,52; 17,48) 

Comentários: 

Pelo enunciado, sabemos que o tamanho amostral é 𝑁 = 9. Logo, temos 𝑁 − 1 = 8 graus de liberdade. Pela 
tabela fornecida, para 8 de graus de liberdade, observamos que 𝑡 = 1,86. Considerando, ainda, que a 

variância é 𝑠2 = 16, logo 𝑠 = √𝑠2 = √16 = 4, temos: 𝐸 = 𝑡. 𝑠√𝑁 = 1,86 × 43 = 2,48 

Assim, o intervalo de confiança para a média 𝑋̅ = 15 é: 𝑋̅ − 𝐸 = 15 − 2,48 = 12,52 𝑋̅ + 𝐸 = 15 + 2,48 = 17,48 

Gabarito: E. 
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(FGV/2022 - TJDFT) Em um modelo de simulação de uma fila com apenas um servidor para atendimento, 
foram realizadas 9 replicações para determinar o número médio de pessoas em fila. Os resultados obtidos 
para cada replicação estão no quadro a seguir. 

 

O intervalo bilateral de confiança de 95% para a média é, aproximadamente: 

a) (1,83; 3,39) 

b) (1,73; 3,50) 

c) (1,69; 3,53) 

d) (0,33; 4,83) 

e) (0,04; 5,12) 

Nessa prova, foi fornecida a tabela de t-Student da forma P(T > t0), parcialmente replicada a seguir. 

 

Comentários: 

Essa questão trabalha com um intervalo de confiança para a média, com variância desconhecida: 𝑋̅ ± 𝑡. 𝑠√𝑛 

Em que 𝑠 é a estimativa para o desvio padrão. Pela tabela fornecida na questão, observamos que 𝑋̅ = 2,61, 

que 𝑠 = 1,2 e 𝑛 = 9 (logo, √𝑛 = √9 = 3).  

Agora, precisamos encontrar o valor de t. Um intervalo com 95% de confiança deixa 2,5% abaixo do limite 
inferior e 2,5% acima do limite superior. Logo, precisamos do valor de t0 associada a uma probabilidade P(T 
> t0) = 2,5% = 0,025.  

Pela tabela de t-Student fornecida, observamos que, para n - 1 = 8 graus de liberdade e 0,025 de área da 

cauda superior, temos t0 = 2,306 ≅ 2,3. Substituindo esses dados na fórmula do intervalo de confiança: 2,61 ± 2,3. 1,23 = 2,61 ± 2,3 × 0,4 = 2,61 ± 0,92 = (1,69; 3,53) 

Gabarito: C 



 

Intervalo de Confiança para a Proporção 

Para estimar a proporção populacional, 𝑝, utilizamos a proporção encontrada na amostra, 𝑝̂. A variância 

desse estimador é dada por: 𝑉(𝑝̂) = 𝑝̂. 𝑞̂𝑛  

Lembre-se que 𝑞̂ = 1 − 𝑝̂.  

 

O desvio padrão é, portanto: 

𝐷(𝑝̂) = √𝑉(𝑝̂) = √𝑝̂. 𝑞̂𝑛  

 

Assim, a transformação para a normal padrão é: 𝑧 = 𝑝̂ + 𝐸 − 𝑝̂√𝑝̂. 𝑞̂𝑛 = 𝐸 √𝑝̂. 𝑞̂𝑛  

𝐸 = 𝑧. √𝑝.𝑞̂𝑛   

 

E o intervalo de confiança será da forma (𝑝̂ − 𝑧. √𝑝.𝑞̂𝑛 ; 𝑝̂ + 𝑧. √𝑝.𝑞̂𝑛 ). 

 

Vamos supor que tenhamos estimado a proporção amostral de defeito em 𝑝̂ = 0,2 (logo, 𝑞̂ = 1 − 𝑝̂ = 0,8), 

considerando uma amostra de 𝑛 = 100 peças.  

Nesse caso, o desvio padrão (ou erro padrão) é dado por: 

√𝑝̂. 𝑞̂𝑛 = √0,2 × 0,8100 = √0,16√100 = 0,410 = 0,04 

 

Considerando um nível de confiança de 95% (z = 1,96), a margem de erro será: 

𝐸 = 𝑧. √𝑝̂. 𝑞̂𝑛 = 1,96 × 0,04 = 0,0784 ≅ 0,8 
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Então, o intervalo de confiança para a proporção será aproximadamente: 

𝑝̂ + 𝑧. √𝑝̂. 𝑞̂𝑛 ≅ 0,2 + 0,08 = 0,28 

𝑝̂ − 𝑧. √𝑝̂. 𝑞̂𝑛 ≅ 0,2 − 0,08 = 0,12 

(0,12; 0,28) 

 

Tamanho Amostral 

Também podemos determinar o tamanho amostral, dado um nível de confiança (1 − 𝛼) e um valor de erro 

máximo 𝐸. Reorganizando a fórmula do erro que acabamos de ver, temos (lembre-se que 𝑞̂ = 1 − 𝑝̂): 

𝑛 = (𝑧𝐸)2 𝑝̂. 𝑞̂  

Vamos supor que o erro máximo tolerável seja E = 0,04, mantendo os demais parâmetros iguais. Nesse caso, 

o tamanho da amostra 𝑛2 necessário é: 

𝑛2 = (1,960,04)2 × 0,2 × 0,8 = (49)2 × 0,16 = 2401 × 0,16 ≅ 384 

 

Vale pontuar que o maior valor de 𝒏 é obtido com 𝒑̂ = 𝒒̂ = 𝟎, 𝟓, considerando o mesmo nível de confiança 

(mesmo 𝑧) e o mesmo erro máximo 𝐸, pois essa proporção está associada ao maior desvio padrão/variância.  

Assim, mesmo sem ter uma estimativa para a proporção amostral, é possível determinar um valor máximo 

para o tamanho amostral (também chamado de valor seguro), considerando 𝑝̂ = 𝑞̂ = 0,5 na fórmula acima.  

Supondo, então, 𝑧 = 1,96 e o erro máximo tolerável 𝐸 = 0,04, o valor seguro para o tamanho amostral, 𝑛∗, 

sem termos uma estimativa para a proporção amostral é: 

𝑛∗ = (1,960,04)2 × 0,5 × 0,5 = (49)2 × 0,25 = 2401 × 0,25 ≅ 600 

De modo geral, o valor de 𝑛 será maior quanto mais próximo de 0,5 forem essas proporções. 

Novamente, tal fórmula pressupõe uma população infinita ou amostras extraídas com reposição. Caso a 

população seja finita e as amostras extraídas sem reposição, então será necessário aplicar o fator de correção 

para população finita. Para isso, devemos multiplicar a fórmula do erro pelo fator √𝑁−𝑛𝑁−1: 

𝐸 = 𝑧. √𝑝̂. 𝑞̂𝑛 . √𝑁 − 𝑛𝑁 − 1 
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(CESPE 2018/PF) Determinado órgão governamental estimou que a probabilidade p de um ex-condenado 
voltar a ser condenado por algum crime no prazo de 5 anos, contados a partir da data da libertação, seja 
igual a 0,25.  

Essa estimativa foi obtida com base em um levantamento por amostragem aleatória simples de 1.875 
processos judiciais, aplicando-se o método da máxima verossimilhança a partir da distribuição de Bernoulli.  

Sabendo que P(Z < 2) = 0,975, em que Z representa a distribuição normal padrão, julgue o item que se segue, 
em relação a essa situação hipotética. 

A estimativa intervalar 0,25 ± 0,05 representa o intervalo de 95% de confiança do parâmetro populacional 
p. 

Comentários: 

O intervalo de confiança de uma distribuição de proporção é dado por: 

𝑝̂ ± 𝑍0 × √𝑝̂ × 𝑞̂𝑛  

Vamos aos dados do problema: 𝑝̂ = 0,25 → 𝑝𝑟𝑜𝑝𝑜𝑟çã𝑜 𝑎𝑚𝑜𝑠𝑡𝑟𝑎𝑙 𝑞̂ = 1 − 𝑝̂ = 0,75 𝑛 = 1.875 → 𝑡𝑎𝑚𝑎𝑛ℎ𝑜 𝑑𝑎 𝑎𝑚𝑜𝑠𝑡𝑟𝑎 𝑍0 = 2 → 𝑛í𝑣𝑒𝑙 𝑑𝑒 𝑐𝑜𝑛𝑓𝑖𝑎𝑛ç𝑎 𝑑𝑒 95% 𝑛𝑎 𝑡𝑎𝑏𝑒𝑙𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 

0,25 ± 2 × √0,25 × 0,751.875  

0,25 ± 2 × √0,18751.875  

0,25 ± 2 × √0,0001 0,25 ± 2 × 0,01 0,25 ± 0,02 

Gabarito: Errado. 

 



 

(2019/FMS) Uma pesquisa tem como finalidade conhecer a proporção de pessoas em Teresina que teriam 
interesse em frequentar uma nova franquia de lanchonete vinda do exterior. O empreendedor diz que só 
vale a pena a instalação da franquia, se pelo menos 10% da população tivesse interesse em frequentar o 
estabelecimento. Supondo que a proporção máxima da população não será maior que 30%, qual tamanho 
de amostra (aproximado) tal que a diferença entre a proporção populacional e proporção amostral não tenha 
um erro maior que três pontos percentuais, com uma confiança de 95%. Obs.: zγ=1,96. 

a) 897 

b) 683 

c) 700 

d) 300 

e) 654 

Comentários: 

O tamanho amostral é dado por: 𝑛 = (𝑧𝐸)2 𝑝̂. 𝑞̂ 

O enunciado informa que 𝑧 = 1,96 e 𝐸 = 0,03. Devemos considerar, ainda, 𝑝̂ = 0,3. (Esse é o valor máximo 
para a proporção. Quanto mais próximos de 50%, maior será o valor de n. Logo, ao utilizar o valor de 30%, 
estamos calculando um valor seguro para o tamanho amostral). Sabendo que 𝑞̂ = 1 − 𝑝̂ = 0,7, temos: 𝑛 = (1,960,03)2 × 0,3 × 0,7 ≅ 897 

Gabarito: A. 

 

(FGV/2022 – MPE/SC) Uma empresa recebeu um lote muito grande, milhões de peças de refugo, e deseja 
saber quantas peças deverá examinar para estimar a proporção de itens defeituosos, de modo que o erro de 
estimação seja no máximo 2%. Será empregada uma seleção aleatória de itens onde cada um será 
classificado como defeituoso ou não defeituoso. Deseja-se extrair uma amostra aleatória de tamanho n.  

Tendo como padrão um grau de confiança de 95%, o tamanho da amostra necessário para garantir o 
processo é: 

a) 189; 

b) 384; 

c) 600; 

d) 1681; 

e) 2401. 

Comentários: 

Essa questão também trabalha com o tamanho amostral, para a estimação de proporções: 𝑛 = (𝑧𝐸)2 . 𝑝̂. 𝑞̂ 



 

Em que 𝑧 é o valor da tabela normal padrão associado ao nível (ou grau) de confiança desejado; 𝐸 é a margem 
de erro (ou erro máximo de estimação); 𝑝̂ é a estimativa para a proporção de sucesso e 𝑞̂ é a estimativa para 
a proporção de fracasso, sendo 𝑞̂ = 1 − 𝑝̂. 

O enunciado informa que o erro máximo é 𝐸 = 2% = 0,02; e que o grau de confiança é de 95%, logo, z = 
1,96. A questão não informa a estimativa para a proporção de sucesso, logo, devemos considerar aquela que 
maximiza o tamanho da amostra, qual seja, 𝑝̂ = 𝑞̂ = 0,5. Substituindo esses dados na fórmula, temos: 𝑛 = (1,960,02)2 × 0,5 × 0,5 = (98)2 × 0,25 = 2401 

Gabarito: E 

 

Intervalo de Confiança para a Variância 

O estimador da variância 𝑠2, multiplicado pelo fator (𝑛−1𝜎2 ), segue uma distribuição qui-quadrado com 𝒏 − 𝟏 

graus de liberdade: 𝒳𝑛−12 = (𝑛 − 1𝜎2 ) 𝑠2 

 

Como essa distribuição é assimétrica, utilizaremos a tabela da distribuição qui-quadrado para encontrar 

tanto o limite superior, 𝒳𝑆𝑈𝑃2 , quanto o limite inferior, 𝒳𝐼𝑁𝐹2 , do intervalo de confiança: 𝒳𝐼𝑁𝐹2 < (𝑛 − 1𝜎2 ) 𝑠2 < 𝒳𝑆𝑈𝑃2  

Isolando 𝜎2 nessa expressão, temos:  (𝑛 − 1). 𝑠2𝒳𝑆𝑈𝑃2 < 𝜎2 < (𝑛 − 1). 𝑠2𝒳𝐼𝑁𝐹2  

 

Ou seja, para o limite inferior, dividimos por 𝓧𝑺𝑼𝑷𝟐  e para o limite superior dividimos por 𝓧𝑰𝑵𝑭𝟐 .  

Atente-se que 𝒳𝑆𝑈𝑃2  é um valor maior que 𝒳𝐼𝑁𝐹2 . Assim, quando dividimos por 𝒳𝑆𝑈𝑃2  (limite inferior) obtemos 

um valor menor do que quando dividimos por 𝒳𝐼𝑁𝐹2  (limite superior). 

 

Logo, o intervalo de confiança para a variância é da forma: 

((𝑛−1).𝑠2𝒳𝑆𝑈𝑃2 ; (𝑛−1).𝑠2𝒳𝐼𝑁𝐹2 )  
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Novamente, os valores 𝒳𝑆𝑈𝑃2  e 𝒳𝐼𝑁𝐹2  são obtidos a partir da tabela, dependendo do nível de confiança 1 − 𝛼 

desejado e do tamanho da amostra, conforme ilustrado abaixo.  

 

 

 

Assim, como para as distribuições anteriores, o valor 𝒳𝐼𝑁𝐹2  deixa 
𝛼2 da distribuição abaixo; e o valor 𝒳𝑆𝑈𝑃2  

deixa 
𝛼2 da distribuição acima (a diferença é que agora não estamos mais lidando com uma distribuição 

simétrica): 

𝑃(𝒳2 < 𝒳𝐼𝑁𝐹2 ) = 𝛼2  𝑃(𝒳2 < 𝒳𝑆𝑈𝑃2 ) = 1 − 𝛼2  

 

Para ilustrar, vamos supor uma amostra de tamanho n = 5. Abaixo, replicamos os valores da tabela para n – 

1 = 4 graus de liberdade: 𝑃(𝒳42 < 𝑥) 0,005 0,01 0,025 0,05 0,1 0,25 0,5 0,75 0,9 0,95 0,975 0,99 0,995 𝑥 0,21 0,30 0,48 0,71 1,06 1,92 3,36 5,39 7,78 9,49 11,14 13,28 14,86 

 

Supondo um nível de confiança de 1 − 𝛼 = 0,95 (portanto, 𝛼 = 0,05), podemos observar na tabela que o 

valor de 𝒳𝐼𝑁𝐹2  associado à probabilidade 𝑃(𝒳2 < 𝒳𝐼𝑁𝐹2 ) = 𝛼2 = 0,025 é 𝒳𝐼𝑁𝐹2 = 0,48; e o valor 𝒳𝑆𝑈𝑃2  

associado à probabilidade 𝑃(𝒳2 < 𝒳𝑆𝑈𝑃2 ) = 1 − 𝛼2 = 0,975 é 𝒳𝑆𝑈𝑃2 = 11,14. 

Considerando que a variância amostral seja 𝑠2 = 0,0125, os limites do intervalo de confiança são: (𝑛 − 1). 𝑠2𝒳𝑆𝑈𝑃2 = 4 × 0,012511,14 = 0,0511,14 ≅ 0,004 (𝑛 − 1). 𝑠2𝒳𝐼𝑁𝐹2 = 4 × 0,01250,48 = 0,050,48 ≅ 0,104 

E o intervalo é, então: (0,004; 0,104) 

1 − 𝛼 

𝛼 2⁄  𝛼 2⁄  

𝒳𝑆𝑈𝑃2  𝒳𝐼𝑁𝐹2  
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(FGV/2019 – DPE-RJ) Com o objetivo de produzir uma estimativa por intervalo para a variância populacional, 
realiza-se uma amostra de tamanho n = 4, obtendo-se, após a extração, os seguintes resultados:  

X1 = 6, X2 = 3, X3 = 11 e X4 = 12 

Informações adicionais: 

P (X2
4 < 0,75 ) = 0,05 P (X2

3 < 0,40 ) = 0,05  

P (X2
4 < 10,8 ) = 0,95 P (X2

3 < 9 ) = 0,95  

Então, sobre o resultado da estimação, e considerando-se um grau de confiança de 90%, tem-se que:  

a) 5 < σ2 < 72; 

b) 8 < σ2 < 180; 

c) 6 < σ2 < 135; 

d) 4 < σ2 < 22; 

b) 6 < σ2 < 24. 

Comentários: 

O intervalo de confiança para a variância é dado por: ((𝑛 − 1). 𝑠2𝒳𝑆𝑈𝑃2 ; (𝑛 − 1). 𝑠2𝒳𝐼𝑁𝐹2 ) 

Primeiro, precisamos calcular a estimativa para variância 𝑠2: 𝑠2 = ∑ (𝑋𝑖 − 𝑋̅)2𝑛𝑖=1𝑛 − 1  

O valor da média amostral é: 𝑋̅ = ∑ 𝑋𝑖𝑛 = 6 + 3 + 11 + 124 = 324 = 8 

Logo, o estimador da variância é: 𝑠2 = (6 − 8)2 + (3 − 8)2 + (11 − 8)2 + (12 − 8)24 − 1 = (−2)2 + (−5)2 + (3)2 + (4)23  𝑠2 = 4 + 25 + 9 + 163 = 543 = 18 

Sabendo que são n – 1 = 3 graus de liberdade e um intervalo de confiança de 95%, temos 𝒳𝐼𝑁𝐹2 = 0,4 e 𝒳𝑆𝑈𝑃2 = 9, logo o intervalo de confiança é: 𝐼𝑛𝑓 = 3 × 189 = 6 



 

𝑆𝑢𝑝 = 3 × 180,4 = 135 

Gabarito: C. 

 

 

Estimação Intervalar 

Intervalo para a Média – Variância conhecida (distribuição normal):  

Margem de Erro: 𝑬 = 𝒛. 𝝈√𝒏;  Tamanho amostral: 𝒏 = (𝒛. 𝝈𝑬)𝟐
 

Intervalo para a Média – Variância desconhecida (distribuição t-Student):  

Margem de Erro: 𝑬 = 𝒕𝒏−𝟏. 𝒔√𝒏;   Tamanho Amostral: 𝒏 = (𝒕. 𝒔𝑬)𝟐
 

Intervalo para a Proporção: 

Margem de Erro 𝑬 = 𝒛. √𝒑̂.𝒒̂𝒏 ;  Tamanho Amostral: 𝒏 = (𝒛𝑬)𝟐 𝒑̂. 𝒒̂ 

Intervalo para a Variância: ((𝒏−𝟏).𝒔𝟐𝓧𝑺𝑼𝑷𝟐 ; (𝒏−𝟏).𝒔𝟐𝓧𝑰𝑵𝑭𝟐 ) 
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INFERÊNCIA BAYESIANA 

A inferência Bayesiana (ou estatística Bayesiana) é um assunto que vem recebendo mais atenção, 

tanto no mundo acadêmico quanto no mundo prático das análises Estatísticas. Como reflexo disto, 

também estão surgindo algumas questões em concursos sobre o tema.  

Normalmente, estudamos a inferência clássica (ou frequentista) que considera que toda a 

informação disponível está representada na amostra e que o parâmetro populacional é fixo.  

Já na inferência Bayesiana, além das informações disponíveis na amostra, que chamamos de 

distribuição a posteriori, incorporamos informações que sabemos ser verdadeiras, mas que não 

estarão representadas na amostra (não observáveis). Essas informações podem ser denominadas 

subjetivas e compõem a distribuição a priori.  

Por exemplo, no tocante a eleições democráticas, sabemos que um candidato não terá 100% dos 

votos. Essa informação pode ser incorporada ao modelo para aprimorar a estimativa. Por outro 

lado, a inserção de informações que não são verdadeiras tornam o modelo inapropriado. Por 

exemplo, se for considerado que nenhum candidato terá 70% dos votos, mas se isso for de fato 

possível, a estimativa estará enviesada. 

Na inferência Bayesiana, considera-se também que o parâmetro populacional a ser estimado é 

uma variável aleatória (e não fixo como na inferência clássica). Ademais, o que chamávamos de 

intervalo de confiança na inferência clássica passa a ser chamado de intervalo de credibilidade. 

 

 

 

 
 

 

 

 

 

 

O nome dessa abordagem decorre do fato de ela ser baseada no Teorema de Bayes (da Teoria 

de Probabilidade): 

• Parâmetro populacional é variável aleatória 

• Depende de informações não observáveis 

(além das informações da amostra) 

• Depende de uma distribuição a priori (além da 

distribuição a posteriori) 

• Intervalo de credibilidade 

• Parâmetro populacional é fixo 
 

• Toda a informação está disponível na amostra 
 

• Apenas distribuição a posteriori 
 

• Intervalo de confiança 

Inferência Clássica ou Frequentista Inferência Bayesiana 

Victor
Destacar

Victor
Destacar

Victor
Destacar

Victor
Retângulo



 

𝑃(𝐴|𝐵) = 𝑃(𝐴) × 𝑃(𝐵|𝐴)
𝑃(𝐵)  

A probabilidade 𝑃(𝐴|𝐵) representa a probabilidade a posteriori; 𝑃(𝐴) representa a 

probabilidade a priori; e 𝑃(𝐵|𝐴) representa a função de verossimilhança. 

 

Mais especificamente, a Inferência Bayesiana considera que os dados observados 

na amostra 𝑋!, 𝑋", … , 𝑋# possuem uma distribuição condicionada ao parâmetro 

de interesse (ou vetor de parâmetros) 𝜃 aleatório e não observável, 𝑓(𝑋$|𝜃).  
Assim, a partir dos valores observados na amostra, define-se a função de 

verossimilhança, 𝐿(𝜃; 𝑥). E, aplicando a fórmula de Bayes, tem-se: 

𝑃(𝜃|𝑋 = 𝑥) = %(';))×,(')

,(-.))
   

Em que 𝑃(𝜃|𝑋 = 𝑥) corresponde à distribuição a posteriori do parâmetro 𝜃 (de 

interesse), dada a amostra observada; 𝑃(𝜃) é a distribuição a priori do parâmetro 

𝜃 e 𝑃(𝑋 = 𝑥) é chamada de distribuição preditiva de X, que representa a 

distribuição associada às observações. 

O denominador tem pouca importância nos cálculos e um fundamento relevante 

do método é que a distribuição a posteriori do parâmetro é proporcional ao 

produto entre da versomilhança (que carrega a distribuição da amostra) com a 

distribuição a priori (que carrega a distribuição prévia, antes dos dados). 

𝑃(𝜃|𝑋 = 𝑥) ∝ 𝐿(𝜃; 𝑥) × 𝑃(𝜃)  
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(2017 – TRF – 2ª Região – Adaptada) Sobre a abordagem bayesiana para estimar um parâmetro 

𝜃, julgue as afirmativas a seguir. 

I – Uma distribuição de probabilidade é atribuída para esse parâmetro. 

II – A definição da distribuição priori pode ser totalmente subjetiva. 

Comentários: 

Na inferência bayesiana, considera-se que o parâmetro de interesse não é fixo, mas sim, uma 

variável aleatória. Ou seja, de fato, atribui-se uma distribuição ao parâmetro de interesse e a 

afirmativa I está correta. 

Ademais, considera-se uma distribuição a priori, com informações subjetivas, que não podem ser 

observada na amostra. Logo, a afirmativa II também está correta. 

Resposta: I e II certas. 

 

(CESPE/2019 – TJ-AM) A respeito dos diferentes métodos de estimação de parâmetros, julgue o 

item a seguir. 

A estimação de parâmetros pelo método bayesiano independe da distribuição a priori utilizada. 

Comentários: 

Na inferência bayesiana, são consideradas informações não observáveis na amostra (subjetivas) 

que compõem a chamada distribuição a priori. Logo, o item está incorreto. 

Gabarito: Errado. 

  



 

RESUMO DA  AULA 

Estimadores 

Þ Média amostral 𝑋2: 𝐸(𝑋2) = 𝜇, 𝑉(𝑋2) = /!

#
, 𝐸𝑃(𝑋2) = /

√#
 

Þ Proporção amostral 𝑝̂: 𝐸(𝑝̂) = 𝑝, 𝑉(𝑝̂) = 1.3

#
, 𝐸𝑃(𝑝̂) = 81.3

#
 

Þ Estimador da variância amostral: 𝑠" = ∑(-"5-6)	
!

#5!
 

Propriedades dos Estimadores 

Þ Suficiente (contempla todas as informações para estimar o parâmetro populacional) 

Þ Não Tendencioso (esperança do estimador é igual ao parâmetro populacional) 

Þ Eficiente (menor variância possível) 

Þ Consistente (estimativas convergem com o aumento do tamanho amostral) 

Métodos de Estimação 

Þ Método dos Momentos: Resulta em 𝑋2 como estimador para a média; e em 𝜎"; = ∑(-"5-6)	
!

#
 

como estimador para a variância (𝜎"; é tendencioso) 

Þ Método da Máxima Verossimilhança: Resulta em 𝑝̂ como estimador para a proporção; para 

uma população normal, em 𝑋2 como estimador da média e 𝜎"; = ∑(-"5-6)	
!

#
 como estimador 

para a variância (𝜎"; é tendencioso) 

Þ Método dos Mínimos Quadrados: Resulta em 𝑋2 como estimador para a média; e em 𝑝̂ como 

estimador para a proporção 

Estimação Intervalar 

Þ Erro depende do nível de confiança desejado e do tamanho da amostra  

Þ Intervalo de confiança para população com variância conhecida: 𝑋2 ± 𝑧. /
√#

 

Þ Intervalo de confiança para população com variância desconhecida: 𝑋2 ± 𝑡#5!. /√# 

Erro Padrão é o desvio 

padrão (raiz quadrada da 

variância) do estimador 

Erro Máximo          

(metade da amplitude 

do intervalo) 


