
27/05/2020 Kotlin: Aula 1 - Atividade 8 Para saber mais: Operador invoke | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/kotlin-recursos-do-paradigma-funcional/task/75386 1/2

 08
Para saber mais: Operador invoke

Para inicializar uma variável do tipo função com um objeto, implementamos uma função na classe. Ao implementar a

função, sobrescrevemos o método invoke() e, como foi mencionado, ele é um "operador especial". Esse operador é

conhecido como sobrecarga de operador ou operator overloading (https://kotlinlang.org/docs/reference/operator-

overloading.html).

Isso significa que não precisamos implementar um tipo função para obter um invoke() em uma classe, podemos

também adicionar como um overloading operator:

class Teste {
 operator fun invoke() {
 println("executa invoke do Teste")
 }
}

Dessa maneira, uma variável do tipo Teste , pode chamar o operador invoke a partir do operador () :

val teste = Teste()
teste()

Nesta implementação não temos mais compatibilidade com o tipo função () -> Unit , pois só é possível a

compatibilidade por meio da implementação do tipo como fizemos, porém, podemos escrever mais de um operador

invoke :

class Teste : () -> Unit {

 operator fun invoke(valor: Int){
 println(valor)
 }

 override fun invoke() {
 println("executa invoke do Teste")
 }

}

Dessa forma, podemos inicializar variáveis do tipo () -> Unit , como também manter o comportamento de execução

em variáveis do tipo Teste :

val teste = Teste()
teste(10)
val testeFuncao: () -> Unit = Teste()
testeFuncao()

https://kotlinlang.org/docs/reference/operator-overloading.html

27/05/2020 Kotlin: Aula 1 - Atividade 8 Para saber mais: Operador invoke | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/kotlin-recursos-do-paradigma-funcional/task/75386 2/2

