27/05/2020 Kotlin: Aula 1 - Atividade 8 Para saber mais: Operador invoke | Alura - Cursos online de tecnologia

O o8
Para saber mais: Operador invoke

Para inicializar uma variavel do tipo fungdo com um objeto, implementamos uma func¢éo na classe. Ao implementar a
funcéo, sobrescrevemos o método invoke() e, como foi mencionado, ele é um "operador especial”. Esse operador é
conhecido como sobrecarga de operador ou operator overloading (https://kotlinlang.org/docs/reference/operator-

overloading.html).

Isso significa que ndo precisamos implementar um tipo funcdo para obter um invoke() em uma classe, podemos

também adicionar como um overloading operator:

class Teste {
operator fun invoke() {
println("executa invoke do Teste")

Dessa maneira, uma variavel do tipo Teste , pode chamar o operador invoke a partir do operador () :

val teste = Teste()
teste()

Nesta implementacdo nfo temos mais compatibilidade com o tipo fungdo () -> Unit , pois sé é possivel a
compatibilidade por meio da implementagdo do tipo como fizemos, porém, podemos escrever mais de um operador

invoke :

class Teste : () -> Unit {

operator fun invoke(valor: Int){
println(valor)

override fun invoke() {
println("executa invoke do Teste")

Dessa forma, podemos inicializar variaveis do tipo () -> Unit , como também manter o comportamento de execugao

em variaveis do tipo Teste :

val teste = Teste()

teste(10)

val testeFuncao: () -> Unit = Teste()
testeFuncao()

https://cursos.alura.com.br/course/kotlin-recursos-do-paradigma-funcional/task/75386 12


https://kotlinlang.org/docs/reference/operator-overloading.html

27/05/2020 Kotlin: Aula 1 - Atividade 8 Para saber mais: Operador invoke | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/kotlin-recursos-do-paradigma-funcional/task/75386 2/2



