
18/04/2020 Vue.js parte 2: Aula 1 - Atividade 8 Lidando com argumentos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/vue-parte2/task/23587 1/3

 08
Lidando com argumentos

Transcrição

Excelente, nossa diretiva de transformação funciona rotacionando qualquer elemento na tela. Aliás, você a adicionou

no meu-painel ao invés de utiliza-la em imagem-responsiva ? Bem, eu pre�ro seu uso em imagem-responsiva e o design,

amigo imaginário, também.

Mas vejamos o seguinte. E se quisermos, no lugar de rotacionar a imagem quisermos ampliá-la? Veja que o modi�cador

animacao faz sentido, já o reverse, não muito. Para isso, precisamos trabalhar com argumentos.

Vamos alterar a chamada da nossa diretiva no template de Home :

Veja que logo após o nome da diretiva foi adicionando dois ponto seguido do nome do parâmetro. No caso, estamos

passando rotate . Aliás, esse será o efeito padrão quando nenhum argument for passado. Agora, vamos alterar nossa

diretiva para levar em consideração esse argumento:

// alurapic/src/directives/Transform.js

import Vue from 'vue';

Vue.directive('meu-transform', {

 bind(el, binding, vnode) {

 let current = 0;

 el.addEventListener('dblclick', function() {

 let incremento = binding.value || 0;

 let efeito;

 if(!binding.arg || binding.arg == 'rotate') {

 if(binding.modifiers.reverse) {
 current-=incremento;
 } else {
 current+=incremento;
 }
 efeito = `rotate(${current}deg)`;
 }

 this.style.transform = efeito;

 if (binding.modifiers.animate) this.style.transition = "transform 0.5s";

<!-- alurapic/src/components/home/Home.vue -->

<imagem-responsiva :url="foto.url" :titulo="foto.titulo" v-meu-transform:rotate.animate.reverse=

18/04/2020 Vue.js parte 2: Aula 1 - Atividade 8 Lidando com argumentos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/vue-parte2/task/23587 2/3

 });
 }

});

É através de binding.arg que veri�camos a existência ou não de um argumento. Um teste indica que tudo continua

funcionando. Por �m, vamos adicionar a condição que aumenta o tamanho da imagem:

// alurapic/src/directives/Transform.js

import Vue from 'vue';

Vue.directive('meu-transform', {

 bind(el, binding, vnode) {

 let current = 0;

 el.addEventListener('dblclick', function() {

 let incremento = binding.value || 0;

 let efeito;

 if(!binding.arg || binding.arg == 'rotate') {

 if(binding.modifiers.reverse) {
 current-=incremento;
 } else {
 current+=incremento;
 }
 efeito = `rotate(${current}deg)`;

 } else if(binding.arg == 'scale') {

 efeito = `scale(${incremento})`;
 }

 this.style.transform = efeito;

 if (binding.modifiers.animate) this.style.transition = "transform 0.5s";

 });
 }

});

Veja que o modi�cador reverse será ignorado quando o argumento for scale . Isso não é feio não, podemos ter vários

modi�cadores que se aplicam a um tipo de argumento. Outro ponto que mudamos é o valor padrão de 90 para 0. Não faz

sentido usar um scale com 90!

Hoje, nosso componente esta assim:

18/04/2020 Vue.js parte 2: Aula 1 - Atividade 8 Lidando com argumentos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/vue-parte2/task/23587 3/3

Agora, vamos mudar para scale. Podemos remover o modi�cador reverse já que ele não terá afeito algum quando

usarmos scale :

Podemos também não usar animação omitindo o modi�cador animate e por ai vai. Por �m, para que a imagem

rotacionada e ampliada não fazer de dentro do nosso painel podemos alterar nosso componente Painel e adicionar o

estilo overflow: hidden :

<!-- alurapic/src/components/painel/Painel.vue -->

<template>

 <!-- código omitido -->

</template>

<script>

export default {

 // código omitido
}
</script>

<style>

 /* estilos anteriores omitidos */

 .painel-conteudo {
 overflow: hidden;
 }

</style>

O mais bacana é que essa alteração no estilo do nosso componente se re�etirá em todos os lugares que ele for utilizado.

<!-- alurapic/src/directives/Transform.js -->

<imagem-responsiva :url="foto.url" :titulo="foto.titulo" v-meu-transform:rotate.animate.reverse=

<!-- alurapic/src/directives/Transform.js -->

<imagem-responsiva :url="foto.url" :titulo="foto.titulo" v-meu-transform:scale.animate="1.2"/>

