
24/07/2017 Raspberry Pi: Aula 4 - Atividade 9 Mãos na Massa: Criando o script para medir a distância | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/raspberrypi-carro-espiao-com-camera-wifi-e-sensor/task/24368 1/6

 09

Mãos na Massa: Criando o script para medir a distância

Criando o script e importando as bibliotecas

Vamos começar criando o script distancia.py, dentro da pasta /home/raspberry/pibot/ e começar a editá-lo.

Dentro do distancia.py, vamos começar importando as bibliotecas que usaremos:

import RPi.GPIO as GPIO
import time

Con�gurando os GPIOs

Agora, vamos con�gurar as portas do GPIO, como �zemos com o controle.py, setando a pinagem física do GPIO como

referência e desabilitando os alertas:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BOARD)
GPIO.setwarnings(False)

Mapeando os pinos

Com essas con�gurações iniciais prontas, podemos iniciar o mapeamento dos pinos físicos. Vamos criar duas variáveis,

ECHO e TRIG , e colocar em cada uma delas o valor de seu pino GPIO:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BOARD)
GPIO.setwarnings(False)

ECHO = 16
TRIG = 11

Com os pinos con�gurados, podemos criar uma função de setup, que será executada no início do nosso código e con�gurará

os pinos como saída ou entrada. Nesse caso, o nosso pino ECHO será a entrada e o pino TRIG será a saída:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BOARD)
GPIO.setwarnings(False)

ECHO = 16

24/07/2017 Raspberry Pi: Aula 4 - Atividade 9 Mãos na Massa: Criando o script para medir a distância | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/raspberrypi-carro-espiao-com-camera-wifi-e-sensor/task/24368 2/6

TRIG = 11

def setup_sensor():
 GPIO.setup(ECHO, GPIO.IN)
 GPIO.setup(TRIG, GPIO.OUT)

Iniciando a medição

Com todo esse setup inicial pronto, vamos começar a criar a função que irá medir a distância calculada pelo sensor.

Começamos criando a função roda_medicao() , que conterá uma variável global que guardará o valor da distância. Vamos

inicializá-la com 0 :

def roda_medicao():
 global distancia_cm
 distancia_cm = 0

Agora vamos criar um loop in�nito, que irá realizar a medição de 2 em 2 segundos:

def roda_medicao():
 global distancia_cm
 distancia_cm = 0
 while True:
 time.sleep(2)

Após o aguardar o tempo, vamos emitir o pulso, colocando o TRIG , que é um gatilho para o sensor emita o pulso, em alta.

Segundo o site do fabricante, o pulso dura 10 microssegundos, ou seja, devemos aguardar 10 microssegundos e logo depois

colocar o TRIG em baixa:

def roda_medicao():
 global distancia_cm
 distancia_cm = 0
 while True:
 time.sleep(2)
 GPIO.output(TRIG, GPIO.HIGH)
 time.sleep (0.000010)
 GPIO.output(TRIG, GPIO.LOW)

O sensor consegue medir a distância baseando-se no tempo que o ECHO está em alta, ou seja, o tempo que o sensor está

escutando o retorno do pulso enviado. Para medir precisamente o tempo que o sensor �ca em alta, temos que primeiro

descobrir o exato momento que ele sai do nível LOW para o nível HIGH . Para isso, faremos um loop while , que �cará

salvando o tempo enquanto ele estiver em nível baixo, e só sairemos deste loop quando o nível for para HIGH , assim o último

valor possível será salvo na variável quando ele se alterar, veja:

def roda_medicao():
 global distancia_cm
 distancia_cm = 0
 while True:
 time.sleep(2)
 GPIO.output(TRIG, GPIO.HIGH)

24/07/2017 Raspberry Pi: Aula 4 - Atividade 9 Mãos na Massa: Criando o script para medir a distância | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/raspberrypi-carro-espiao-com-camera-wifi-e-sensor/task/24368 3/6

 time.sleep (0.000010)
 GPIO.output(TRIG, GPIO.LOW)
 while GPIO.input(ECHO) == 0:
 pulso_inicial = time.time()

Agora que sabemos o exato momento em que o pulso emitido foi detectado de volta, só temos que �car escutando até o �m

do pulso. Vamos utilizar uma lógica análoga, onde �caremos ouvindo enquanto o ECHO estiver em HIGH e marcar o exato

momento da troca do sinal de HIGH para LOW , que é a indicação que o pulso acabou e devemos medir este tempo.

def roda_medicao():
 global distancia_cm
 distancia_cm = 0
 while True:
 time.sleep(2)
 GPIO.output(TRIG, GPIO.HIGH)
 time.sleep (0.000010)
 GPIO.output(TRIG, GPIO.LOW)
 while GPIO.input(ECHO) == 0:
 pulso_inicial = time.time()
 while GPIO.input(ECHO) == 1:
 pulso_final = time.time()

Com os valores do pulso_inicial e do pulso_final em mãos, conseguimos calcular a sua diferença e obter o tempo que o

pulso �cou viajando pelo ar:

def roda_medicao():
 global distancia_cm
 distancia_cm = 0
 while True:
 time.sleep(2)
 GPIO.output(TRIG, GPIO.HIGH)
 time.sleep (0.000010)
 GPIO.output(TRIG, GPIO.LOW)
 while GPIO.input(ECHO) == 0:
 pulso_inicial = time.time()
 while GPIO.input(ECHO) == 1:
 pulso_final = time.time()
 duracao_pulso = pulso_final - pulso_inicial

Como o pulso de som viaja pelo ar, conseguimos calcular a distância percorrida pelo pulso fazendo uma conta matemática,

pois o pulso viaja na velocidade do som, que é um valor conhecido de 343 m/s ou 34300 cm/s. Mas essa velocidade varia

conforme a temperatura ambiente, o ideal é utilizar o valor da tabela abaixo que mais se aproxima do seu ambiente:

24/07/2017 Raspberry Pi: Aula 4 - Atividade 9 Mãos na Massa: Criando o script para medir a distância | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/raspberrypi-carro-espiao-com-camera-wifi-e-sensor/task/24368 4/6

Como o pulso tem que percorrer duas vezes a distância até o objeto (para chegar até o objeto e para voltar até o sensor),

precisamos dividir essa distância por dois. Feita esta análise física, vamos calcular a distância multiplicando a velocidade do

nosso pulso pelo tempo que ele demorou:

def roda_medicao():
 global distancia_cm
 distancia_cm = 0
 while True:
 time.sleep(2)
 GPIO.output(TRIG, GPIO.HIGH)
 time.sleep (0.000010)
 GPIO.output(TRIG, GPIO.LOW)
 while GPIO.input(ECHO) == 0:
 pulso_inicial = time.time()
 while GPIO.input(ECHO) == 1:
 pulso_final = time.time()
 duracao_pulso = pulso_final - pulso_inicial
 distancia_cm = 34300 * (duracao_pulso/2)

Como é possível que encontremos um número quebrado, vamos utilizar a função round() para arredondá-lo em um número

inteiro, com zero casas decimais:

def roda_medicao():
 global distancia_cm
 distancia_cm = 0
 while True:
 time.sleep(2)
 GPIO.output(TRIG, GPIO.HIGH)
 time.sleep (0.000010)
 GPIO.output(TRIG, GPIO.LOW)
 while GPIO.input(ECHO) == 0:
 pulso_inicial = time.time()
 while GPIO.input(ECHO) == 1:
 pulso_final = time.time()
 duracao_pulso = pulso_final - pulso_inicial

24/07/2017 Raspberry Pi: Aula 4 - Atividade 9 Mãos na Massa: Criando o script para medir a distância | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/raspberrypi-carro-espiao-com-camera-wifi-e-sensor/task/24368 5/6

 distancia_cm = 34300 * (duracao_pulso/2)
 distancia_cm = round(distancia_cm, 0)

Agora, para imprimir este valor, vamos utilizar o end="\r" para que a nova impressão (uma nova distância é impressa a cada

2 segundos) não �que abaixo da antiga, e sim em cima, no mesmo local, assim não precisamos �car fazendo scroll na tela:

def roda_medicao():
 global distancia_cm
 distancia_cm = 0
 while True:
 time.sleep(2)
 GPIO.output(TRIG, GPIO.HIGH)
 time.sleep (0.000010)
 GPIO.output(TRIG, GPIO.LOW)
 while GPIO.input(ECHO) == 0:
 pulso_inicial = time.time()
 while GPIO.input(ECHO) == 1:
 pulso_final = time.time()
 duracao_pulso = pulso_final - pulso_inicial
 distancia_cm = 34300 * (duracao_pulso/2)
 distancia_cm = round(distancia_cm, 0)
 print(distancia_cm, 'cm ',end="\r")

Chamando as funções

Não podemos nos esquecer de, ao �nal do programa, chamar a função de setup e de medição:

setup_sensor()
roda_medicao()

Executando o script

Com tudo pronto, basta executar o comando no terminal:

python3 ~/pibot/distancia.py

Repare que o terminal irá travar e a cada dois segundos ele irá exibir um novo valor de distância.

Download do distancia.py

Para sua comparação, você pode baixar o arquivo completo aqui (https://s3.amazonaws.com/caelum-online-

public/raspberry3/�les/cap4/distancia.py) .

https://s3.amazonaws.com/caelum-online-public/raspberry3/files/cap4/distancia.py

24/07/2017 Raspberry Pi: Aula 4 - Atividade 9 Mãos na Massa: Criando o script para medir a distância | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/raspberrypi-carro-espiao-com-camera-wifi-e-sensor/task/24368 6/6

