12/07/2017 JAX-WS : Aula 3 - Atividade 2 Trabalhando com cabegalhos | Alura - Cursos online de tecnologia

O o2
Trabalhando com cabecalhos

Aluno, vocé esta comecando nesse capitulo? Ndo tem problema, vocé pode baixar o projeto que usaremos nesse capitulo

aqui (https://s3.amazonaws.com/caelum-online-public/soap/stage/estoquews-cap3.zip). Vocé s6 precisar baixar o arquivo se

vocé néo fez os exercicios do capitulo anterior.

Revisao

No ultimo capitulo vimos como personalizar as mensagem SOAP a partir das anotacdes do JAX-B e JAX-WS. Vimos que os
métodos do mundo Java se tornam operation s e 0s pardmetros e retornos sio as mensagens no WSDL. Essas operation s

fazem parte de um elemento chamado portType . De certa forma, a classe Java é traduzida para XML.

Nova funcionalidade: Cadastrar itens

Vamos aumentar um pouco as possibilidades do nosso servico e criar uma nova funcionalidade de cadastrar itens no
sistema. Chamaremos o método cadastrarItem que recebe o Item a cadastrar como pardmetro. Na classe EstoqueWs

adicionaremos:

public Item cadastrarItem(Item item) {

System.out.println(“Cadastrando " + item);
this.dao.cadastrar(item);

return item;

Estamos retornando o mesmo item. Parece que nédo faz sentido, mas normalmente esse item ganha a ID do banco de dados.
E ao retorna-lo estamos informando essa ID. Como j4 fizemos antes, vamos deixar o WSDL mais expressivo usando as

anotacoes @webMethod , @WebParam € @WebResult :

@WebMethod(operationName="CadastrarItem")
@WebResult(name="item")
public Item cadastrarItem(@WebParam(name="item") Item item) {

System.out.println("Cadastrando " + item);

this.dao.cadastrar(item);
return item;

Ja podemos publicar o servico e testar o resultado:

http://localhost:8080/estoquews?wsdl (http://localhost:8080/estoquews?wsdl)

Repare que no elemento portType aparece maisuma operation :

<portType name="EstoqueWS">
<operation name="TodosOsItens">
<input wsam:Action="http://ws.estoque.caelum.com.br/EstoqueWS/TodosOsItensRequest" message="tn:
<output wsam:Action="http://ws.estoque.caelum.com.br/EstoqueWS/TodosOsItensResponse" message="1
</operation>

https://cursos.alura.com.br/course/web-services-soap/task/9834 1/8


https://s3.amazonaws.com/caelum-online-public/soap/stage/estoquews-cap3.zip
http://localhost:8080/estoquews?wsdl

12/07/2017 JAX-WS : Aula 3 - Atividade 2 Trabalhando com cabegalhos | Alura - Cursos online de tecnologia
<operation name="CadastrarItem”>
<input wsam:Action="http://ws.estoque.caelum.com.br/EstoqueWS/CadastrarItemRequest"” message="tr
<output wsam:Action="http://ws.estoque.caelum.com.br/EstoqueiWS/CadastrarItemResponse"” message='
</operation>
</portType>

Trabalhando com cabecalhos

Para cadastrar um novo item no nosso sistema € preciso se autenticar. Podemos pensar que ha uma auditoria automatica
quando alguém altera um dado no sistema e por isso devemos saber quem esta solicitando a alteracéo. Para nosso exemplo
ndo importa muito como a administragéo de usudrios funciona, mas na web é muito comum que um usuario seja
identificado através de um token. Um token é nada mais do que um hash gerado para um cliente. No mundo Java Web existe
0 JSESSIONID que representa um token utilizado em aplicagdes Web. O padréo de autenticagdo e autorizagdo OAuth também

usa um token. Enfim, o nosso sistema néo vai reinventar a roda e também usara um token!

No nosso sistema ja temos uma classe preparada para este objetivo, chamada TokenUsuario :

public class TokenUsuario {

private String token;
private Date dataValidade;

//get e set

Queremos receber o token do usudrio na requisi¢io SOAP que cadastra um item, mas sera que faz sentido misturar os dados
do item e o token do usudrio? Normalmente néo faz e o SOAP ja propde uma forma de separar esses dados. Ja vimos que

existe para tal o elemento Header . Se usarmos ele, a mensagem SOAP deve ficar parecida com a abaixo:

<soapenv:Envelope ...>
<soapenv:Header>
<tokenUsuario>
<dataValidade>2015-08-30T00:00:00</dataValidade>
<token>123131AF!@DF12334a</token>
</tokenUsuario>
<soapenv:Header>
<soapenv:Body>
<!-- body com o item omitido -->
</soapenv:Body>
</soapenv:Envelope>

Para adicionar um elemento no Header , basta criar mais um pardmetro no método cadastrarItem e configura-lo com a

anotacido @webParam . A anotac@o possui um atributo header que indica que o parametro deve ser adicionado ao cabegalho:

@WebMethod (operationName="CadastrarItem")
@WebResult(name="item")
public Item cadastrarItem(@wWebParam(name="tokenUsuario", header=true) TokenUsuario token, @wWebParami|

System.out.println("Cadastrando " + item + ", + token);//imprimindo o token tbm
this.dao.cadastrar(item);

return item;

https://cursos.alura.com.br/course/web-services-soap/task/9834 2/8



12/07/2017 JAX-WS : Aula 3 - Atividade 2 Trabalhando com cabegalhos | Alura - Cursos online de tecnologia

< »

Ao alterar a classe EstoqueWs e rodar o servico, ndo ha mudancas no portType e sim no elemento binding. O binding define
detalhes sobre a codificacdo dos dados e como se monta a mensagem SOAP. Nessa secdo do WSDL esta definido que
usaremos o protocolo HTTP por baixo dos panos, entre varias outras configuraces como Document e literal . O préximo
capitulo veremos mais sobre elas. O que importa agora é o input da operation CadastrarItem,ld estd definido que hda um

soap:header :

<!-- se¢do bindings-->
<operation name="CadastrarItem">
<soap:operation soapAction=""/>
<input>
<soap:body use="literal" parts="parameters"/>
<soap:header message="tns:CadastrarItem" part="tokenUsuario" use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>

Testando o Header

Vamos atualizar o SoapUlI e criar um novo request, nele ja deve aparecer o Header . Abaixo um exemplo do request ja com

dados preenchidos:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ws="http://ws.estc
<soapenv:Header>
<ws :tokenUsuario>
<token>AAA</token>
<dataValidade>2015-12-31T00:00:00</dataValidade>
</ws:tokenUsuario>

</soapenv:Header>
<soapenv:Body>
<ws:CadastrarItem>
<item>
<codigo>MEA</codigo>
<nome>MEAN</nome>
<tipo>Livro</tipo>
<quantidade>5</quantidade>
</item>
</ws:CadastrarItem>
</soapenv:Body>
</soapenv:Envelope>

Ao submeter podemos ver deve aparecer no console do Eclipse o token do usuério.

TokenUsuario [token=AAA, dataValidade=Thu Dec 31 00:00:00 BRST 2015]

Verificando o token

https://cursos.alura.com.br/course/web-services-soap/task/9834

3/8



12/07/2017 JAX-WS : Aula 3 - Atividade 2 Trabalhando com cabegalhos | Alura - Cursos online de tecnologia

Um vez que recebemos o token do usudrio vamos verificar a validade do token. Em ambientes que sdo puramente baseados
em servigos poderia ter um outro servico com a responsabilidade de administrar usuarios. Ainda ndo sabemos como chamar
um servico SOAP a partir do codigo Java, por isso preparamos no nosso sistema uma classe DAO que recebe o token e verifica
a existéncia e validade dele. Vamos pensar que nossa aplicacio administra os usudrios e os tokens. Portanto, ndo é preciso

chamar um servico externo, ok?

A classe TokenDao possuiapenas um método, ehvalido , que recebe o token do usudrio:

public class TokenDao {

public boolean ehValido(TokenUsuario usuario) {
return //devolve true ou false

No método cadastrarItem do servigo chamaremos o método ehvalido :

@WebMethod(operationName="CadastrarItem")
@WebResult(name="item")
public Item cadastrarItem(@WebParam(name="tokenUsuario", header=true) TokenUsuario token, @WebPar:

System.out.println("Cadastrando " + item + ", " + token);

//novo
boolean valido = new TokenDao().ehValido(token); //o que faremos se o token for invalido?

this.dao.cadastrar(item);
return item;

A pergunta que n#o quer calar é: O que faremos se o token for invalido? Com certeza, ndo tem como continuar com a
execuc¢do. Como falamos antes, devemos saber quem esté acessando para cadastrar um item no estoque. Isso parece ser um

momento bom para interromper o fluxo comum e jogar uma excecao.

Trabalhando com excecoes

Se alguém tenta cadastrar um item sem ter um token valido, vamos lancar um excecdo. Chamaremos a excegdo de

AutorizacaoException :

boolean valido = new TokenDao().ehValido(token);

if(!valido) {
throw new AutorizacaoException("Token invalido");

Como a exce¢do nio existe ainda, é preciso crid-la. O Eclipse ajuda nesse sentido e cria a classe automaticamente estendendo

Exception :

public class AutorizacaoException extends Exception {

https://cursos.alura.com.br/course/web-services-soap/task/9834 4/8



12/07/2017 JAX-WS : Aula 3 - Atividade 2 Trabalhando com cabegalhos | Alura - Cursos online de tecnologia

//esse numero eh relacionado com a serializacao do java.io mas nao importa nesse contexto
private static final long serialVersionUID = 1L;

public AutorizacaoException(String msg) {
super(msg);

A AutorizacaoException € do tipo checked e exige um tratamento explicito, por isso o cddigo na classe Estoquews para de

funcionar. Vamos adicionar o tratamento na assinatura do método:
@WebService()
public class EstoqueWS {
private ItemDao dao = new ItemDao();
@WebMethod(operationName="CadastrarItem")
@WebResult(name="item")
public Item cadastrarItem(

@WebParam(name="tokenUsuario", header=true) TokenUsuario token,
@WebParam(name="item") Item item) throws AutorizacaoException {

//cédigo omitido

Repare o throws AutorizacaoException , deixamos explicito que pode acontecer uma AutorizacaoException .

Fault no WSDL

No mundo SOAP nfo existem excegoes e sim Faults. Uma excecdo no mundo Java é traduzido para um Fault. Ao publicar o

servico podemos ver no WSDL que hd uma nova mensagem com o nome da excec¢io:

<message name="AutorizacaoException">
<part name="fault" element="tns:AutorizacaoException"/>

</message>

Essa mensagem ¢é utilizada no elemento portType do WSDL. Além do input e output temosum elemento :

<portType name="EstoqueWS">
<!-- operacao TodosOsItens omitida -->

<operation name="CadastrarItem" parameterOrder="parameters tokenUsuario">
<input message="tns:CadastrarItem"/>
<output message="tns:CadastrarItemResponse”/>
<fault message="tns:AutorizacaoException" name="AutorizacaoException" >
</operation>
</portType>

Estrutura de um Fault

https://cursos.alura.com.br/course/web-services-soap/task/9834 5/8



12/07/2017 JAX-WS : Aula 3 - Atividade 2 Trabalhando com cabegalhos | Alura - Cursos online de tecnologia

No WSDL um SoapFault é também uma mensagem que € associada no portType atravésdo elemento fault . Vamos testar o
servico e enviar uma mensagem com token errado para causar uma excec¢do no lado servidor. Vamos colocar no elemento

token do Header um valor invalido, por exemplo:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ws="http://ws.estc
<soapenv:Header>
<ws:tokenUsuario soapenv:mustUnderstand="1">
<token>errado</token>
<dataValidade>2015-12-31T00:00:00</dataValidade>
</ws:tokenUsuario>
</soapenv:Header>
<!-- body omitido -->
</soapenv:Envelope>

Ao submeter recebemos a resposta com o0 Fault , isto é, dentro do Body tem agoraum Fault :

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<S:Fault xmlns:ns4="http://www.w3.0rg/2003/05/soap-envelope">
<faultcode>S:Server</faultcode>
<faultstring>Token invalido</faultstring>
<detail>
<ns2:AutorizacaoException xmlns:ns2="http://ws.estoque.caelum.com.br/">
<message>Token invalido</message>
</ns2:AutorizacaoException>
</detail>
</S:Fault>
</S:Body>
</S:Envelope>

Um Fault possuium faultcode que indica se o problema foi do servidor ou do cliente, 0 faultstring com uma mensagem

mais amigavel e um detail que é a instancia da excecéo serializada em XML.

Personalizando Fault

Como tudo no JAX-WS podemos e devemos personalizar o Fault que tem ainda uma cara de excecdo Java, que pode ser algo
confuso para outras plataformas. A anotacio responsavel pelo Fault se chama WebFault e deve ser usado no nivel da
classe. Vamos chamar o excecéo de AutorizacaoFault . Além disso, podemos adicionar um método chamado getFaultInfo

na nossa classe que serd usado pelo JAX-B para definir o contetido do elemento detail do Fault :

@WebFault(name="AutorizacaoFault")
public class AutorizacaoException extends Exception {

private static final long serialVersionUID = 1L;
public AutorizacaoException(String msg) {

super(msg);

public String getFaultInfo() {
return "Token invalido";

https://cursos.alura.com.br/course/web-services-soap/task/9834 6/8



12/07/2017 JAX-WS : Aula 3 - Atividade 2 Trabalhando com cabegalhos | Alura - Cursos online de tecnologia
}

Deixamos o getter com uma mensagem fixa, mas poderiamos ter algum atributo que define os detalhes do Fault . Ao testar o

servico aparece na resposta SOAP o nome AutorizacaoFault com ainformacfo Token invalido :

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<S:Fault xmlns:ns4="http://www.w3.0rg/2003/05/soap-envelope">
<faultcode>S:Server</faultcode>
<faultstring>Autorizacao falhou</faultstring>
<detail>
<ns2:AutorizacaoFault xmlns:ns2="http://ws.estoque.caelum.com.br/">Token invalido</ns2:/
</detail>
</S:Fault>
</S:Body>
</S:Envelope>

Ainda estd um pouco inseguro com os Faults do mundo SOAP? Isso entdo é uma boa hora de praticar! Nos exercicios vamos

consolidar o aprendizado e veremos com mais detalhes os cabecalhos e Faults. Mdos a obra!

O que vocé aprendeu nesse capitulo?

e Cabecalhos servem para guardar informacdes dados da aplicagdo
e 0 elemento Header vem antes do Body
e A anotagdo @WebParam serve para definir o Header

e Exceptions sdo mapeadas para Faults

https://cursos.alura.com.br/course/web-services-soap/task/9834

7/8



12/07/2017 JAX-WS : Aula 3 - Atividade 2 Trabalhando com cabegalhos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/web-services-soap/task/9834 8/8



