
12/07/2017 JAX-WS : Aula 3 - Atividade 2 Trabalhando com cabeçalhos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/web-services-soap/task/9834 1/8

 02

Trabalhando com cabeçalhos

Aluno, você está começando nesse capitulo? Não tem problema, você pode baixar o projeto que usaremos nesse capítulo

aqui (https://s3.amazonaws.com/caelum-online-public/soap/stage/estoquews-cap3.zip). Você só precisar baixar o arquivo se

você não fez os exercícios do capítulo anterior.

Revisão

No último capítulo vimos como personalizar as mensagem SOAP a partir das anotações do JAX-B e JAX-WS. Vimos que os

métodos do mundo Java se tornam operation s e os parâmetros e retornos são as mensagens no WSDL. Essas operation s

fazem parte de um elemento chamado portType . De certa forma, a classe Java é traduzida para XML.

Nova funcionalidade: Cadastrar itens

Vamos aumentar um pouco as possibilidades do nosso serviço e criar uma nova funcionalidade de cadastrar itens no

sistema. Chamaremos o método cadastrarItem que recebe o Item a cadastrar como parâmetro. Na classe EstoqueWS

adicionaremos:

public Item cadastrarItem(Item item) {
 System.out.println("Cadastrando " + item);
 this.dao.cadastrar(item);
 return item;
}

Estamos retornando o mesmo item. Parece que não faz sentido, mas normalmente esse item ganha a ID do banco de dados.

E ao retorná-lo estamos informando essa ID. Como já �zemos antes, vamos deixar o WSDL mais expressivo usando as

anotações @WebMethod , @WebParam e @WebResult :

@WebMethod(operationName="CadastrarItem")
@WebResult(name="item")
public Item cadastrarItem(@WebParam(name="item") Item item) {
 System.out.println("Cadastrando " + item);
 this.dao.cadastrar(item);
 return item;
}

Já podemos publicar o serviço e testar o resultado:

http://localhost:8080/estoquews?wsdl (http://localhost:8080/estoquews?wsdl)

Repare que no elemento portType aparece mais uma operation :

<portType name="EstoqueWS">
 <operation name="TodosOsItens">
 <input wsam:Action="http://ws.estoque.caelum.com.br/EstoqueWS/TodosOsItensRequest" message="tns:TodosOsItens"
 <output wsam:Action="http://ws.estoque.caelum.com.br/EstoqueWS/TodosOsItensResponse" message="tns:TodosOsItensResponse"
 </operation>
 <operation name="CadastrarItem">

https://s3.amazonaws.com/caelum-online-public/soap/stage/estoquews-cap3.zip
http://localhost:8080/estoquews?wsdl

12/07/2017 JAX-WS : Aula 3 - Atividade 2 Trabalhando com cabeçalhos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/web-services-soap/task/9834 2/8

 <operation name="CadastrarItem">
 <input wsam:Action="http://ws.estoque.caelum.com.br/EstoqueWS/CadastrarItemRequest" message="tns:CadastrarItem"
 <output wsam:Action="http://ws.estoque.caelum.com.br/EstoqueWS/CadastrarItemResponse" message="tns:CadastrarItemResponse"
 </operation>
</portType>

Trabalhando com cabeçalhos

Para cadastrar um novo item no nosso sistema é preciso se autenticar. Podemos pensar que há uma auditoria automática

quando alguém altera um dado no sistema e por isso devemos saber quem está solicitando a alteração. Para nosso exemplo

não importa muito como a administração de usuários funciona, mas na web é muito comum que um usuário seja

identi�cado através de um token. Um token é nada mais do que um hash gerado para um cliente. No mundo Java Web existe

o JSESSIONID que representa um token utilizado em aplicações Web. O padrão de autenticação e autorização OAuth também

usa um token. En�m, o nosso sistema não vai reinventar a roda e também usará um token!

No nosso sistema já temos uma classe preparada para este objetivo, chamada TokenUsuario :

public class TokenUsuario {

 private String token;
 private Date dataValidade;

 //get e set

Queremos receber o token do usuário na requisição SOAP que cadastra um item, mas será que faz sentido misturar os dados

do item e o token do usuário? Normalmente não faz e o SOAP já propõe uma forma de separar esses dados. Já vimos que

existe para tal o elemento Header . Se usarmos ele, a mensagem SOAP deve �car parecida com a abaixo:

<soapenv:Envelope ...>
 <soapenv:Header>
 <tokenUsuario>
 <dataValidade>2015-08-30T00:00:00</dataValidade>
 <token>123131AF!@DF12334a</token>
 </tokenUsuario>
 <soapenv:Header>
 <soapenv:Body>
 <!-- body com o item omitido -->
 </soapenv:Body>
</soapenv:Envelope>

Para adicionar um elemento no Header , basta criar mais um parâmetro no método cadastrarItem e con�gurá-lo com a

anotação @WebParam . A anotação possui um atributo header que indica que o parâmetro deve ser adicionado ao cabeçalho:

@WebMethod(operationName="CadastrarItem")
@WebResult(name="item")
public Item cadastrarItem(@WebParam(name="tokenUsuario", header=true) TokenUsuario token, @WebParam(name
 System.out.println("Cadastrando " + item + ", " + token);//imprimindo o token tbm
 this.dao.cadastrar(item);
 return item;
}

12/07/2017 JAX-WS : Aula 3 - Atividade 2 Trabalhando com cabeçalhos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/web-services-soap/task/9834 3/8

Ao alterar a classe EstoqueWS e rodar o serviço, não há mudanças no portType e sim no elemento binding. O binding de�ne

detalhes sobre a codi�cação dos dados e como se monta a mensagem SOAP. Nessa seção do WSDL está de�nido que

usaremos o protocolo HTTP por baixo dos panos, entre várias outras con�gurações como Document e literal . O próximo

capítulo veremos mais sobre elas. O que importa agora é o input da operation CadastrarItem , lá está de�nido que há um

soap:header :

<!-- seção bindings-->
<operation name="CadastrarItem">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal" parts="parameters"/>
 <soap:header message="tns:CadastrarItem" part="tokenUsuario" use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
</operation>

Testando o Header

Vamos atualizar o SoapUI e criar um novo request, nele já deve aparecer o Header . Abaixo um exemplo do request já com

dados preenchidos:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ws="http://ws.estoque.caelum.com.br/"
 <soapenv:Header>
 <ws:tokenUsuario>
 <token>AAA</token>
 <dataValidade>2015-12-31T00:00:00</dataValidade>
 </ws:tokenUsuario>

 </soapenv:Header>
 <soapenv:Body>
 <ws:CadastrarItem>
 <item>
 <codigo>MEA</codigo>
 <nome>MEAN</nome>
 <tipo>Livro</tipo>
 <quantidade>5</quantidade>
 </item>
 </ws:CadastrarItem>
 </soapenv:Body>
</soapenv:Envelope>

Ao submeter podemos ver deve aparecer no console do Eclipse o token do usuário.

TokenUsuario [token=AAA, dataValidade=Thu Dec 31 00:00:00 BRST 2015]

Veri�cando o token

12/07/2017 JAX-WS : Aula 3 - Atividade 2 Trabalhando com cabeçalhos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/web-services-soap/task/9834 4/8

Um vez que recebemos o token do usuário vamos veri�car a validade do token. Em ambientes que são puramente baseados

em serviços poderia ter um outro serviço com a responsabilidade de administrar usuários. Ainda não sabemos como chamar

um serviço SOAP a partir do código Java, por isso preparamos no nosso sistema uma classe DAO que recebe o token e veri�ca

a existência e validade dele. Vamos pensar que nossa aplicação administra os usuários e os tokens. Portanto, não é preciso

chamar um serviço externo, ok?

A classe TokenDao possui apenas um método, ehValido , que recebe o token do usuário:

public class TokenDao {

 public boolean ehValido(TokenUsuario usuario) {
 return //devolve true ou false
 }

No método cadastrarItem do serviço chamaremos o método ehValido :

 @WebMethod(operationName="CadastrarItem")
 @WebResult(name="item")
 public Item cadastrarItem(@WebParam(name="tokenUsuario", header=true) TokenUsuario token, @WebParam

 System.out.println("Cadastrando " + item + ", " + token);

 //novo
 boolean valido = new TokenDao().ehValido(token); //o que faremos se o token for invalido?

 this.dao.cadastrar(item);
 return item;
 }

A pergunta que não quer calar é: O que faremos se o token for invalido? Com certeza, não tem como continuar com a

execução. Como falamos antes, devemos saber quem está acessando para cadastrar um item no estoque. Isso parece ser um

momento bom para interromper o �uxo comum e jogar uma exceção.

Trabalhando com exceções

Se alguém tenta cadastrar um item sem ter um token válido, vamos lançar um exceção. Chamaremos a exceção de

AutorizacaoException :

boolean valido = new TokenDao().ehValido(token);

if(!valido) {
 throw new AutorizacaoException("Token invalido");
}

Como a exceção não existe ainda, é preciso criá-la. O Eclipse ajuda nesse sentido e cria a classe automaticamente estendendo

Exception :

public class AutorizacaoException extends Exception {

12/07/2017 JAX-WS : Aula 3 - Atividade 2 Trabalhando com cabeçalhos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/web-services-soap/task/9834 5/8

 //esse numero eh relacionado com a serializacao do java.io mas nao importa nesse contexto
 private static final long serialVersionUID = 1L;

 public AutorizacaoException(String msg) {
 super(msg);
 }

}

A AutorizacaoException é do tipo checked e exige um tratamento explicito, por isso o código na classe EstoqueWS para de

funcionar. Vamos adicionar o tratamento na assinatura do método:

@WebService()
public class EstoqueWS {

 private ItemDao dao = new ItemDao();

 @WebMethod(operationName="CadastrarItem")
 @WebResult(name="item")
 public Item cadastrarItem(
 @WebParam(name="tokenUsuario", header=true) TokenUsuario token,
 @WebParam(name="item") Item item) throws AutorizacaoException {

 //código omitido

Repare o throws AutorizacaoException , deixamos explícito que pode acontecer uma AutorizacaoException .

Fault no WSDL

No mundo SOAP não existem exceções e sim Faults. Uma exceção no mundo Java é traduzido para um Fault. Ao publicar o

serviço podemos ver no WSDL que há uma nova mensagem com o nome da exceção:

<message name="AutorizacaoException">
 <part name="fault" element="tns:AutorizacaoException"/>
</message>

Essa mensagem é utilizada no elemento portType do WSDL. Além do input e output temos um elemento :

<portType name="EstoqueWS">

 <!-- operacao TodosOsItens omitida -->

 <operation name="CadastrarItem" parameterOrder="parameters tokenUsuario">
 <input message="tns:CadastrarItem"/>
 <output message="tns:CadastrarItemResponse"/>
 <fault message="tns:AutorizacaoException" name="AutorizacaoException" >
 </operation>
</portType>

Estrutura de um Fault

12/07/2017 JAX-WS : Aula 3 - Atividade 2 Trabalhando com cabeçalhos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/web-services-soap/task/9834 6/8

No WSDL um SoapFault é também uma mensagem que é associada no portType através do elemento fault . Vamos testar o

serviço e enviar uma mensagem com token errado para causar uma exceção no lado servidor. Vamos colocar no elemento

token do Header um valor inválido, por exemplo:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ws="http://ws.estoque.caelum.com.br/"
 <soapenv:Header>
 <ws:tokenUsuario soapenv:mustUnderstand="1">
 <token>errado</token>
 <dataValidade>2015-12-31T00:00:00</dataValidade>
 </ws:tokenUsuario>
 </soapenv:Header>
 <!-- body omitido -->
</soapenv:Envelope>

Ao submeter recebemos a resposta com o Fault , isto é, dentro do Body tem agora um Fault :

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <S:Fault xmlns:ns4="http://www.w3.org/2003/05/soap-envelope">
 <faultcode>S:Server</faultcode>
 <faultstring>Token invalido</faultstring>
 <detail>
 <ns2:AutorizacaoException xmlns:ns2="http://ws.estoque.caelum.com.br/">
 <message>Token invalido</message>
 </ns2:AutorizacaoException>
 </detail>
 </S:Fault>
 </S:Body>
</S:Envelope>

Um Fault possui um faultcode que indica se o problema foi do servidor ou do cliente, o faultstring com uma mensagem

mais amigável e um detail que é a instância da exceção serializada em XML.

Personalizando Fault

Como tudo no JAX-WS podemos e devemos personalizar o Fault que tem ainda uma cara de exceção Java, que pode ser algo

confuso para outras plataformas. A anotação responsável pelo Fault se chama WebFault e deve ser usado no nível da

classe. Vamos chamar o exceção de AutorizacaoFault . Além disso, podemos adicionar um método chamado getFaultInfo

na nossa classe que será usado pelo JAX-B para de�nir o conteúdo do elemento detail do Fault :

@WebFault(name="AutorizacaoFault")
public class AutorizacaoException extends Exception {

 private static final long serialVersionUID = 1L;

 public AutorizacaoException(String msg) {
 super(msg);
 }

 public String getFaultInfo() {
 return "Token invalido";

12/07/2017 JAX-WS : Aula 3 - Atividade 2 Trabalhando com cabeçalhos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/web-services-soap/task/9834 7/8

 }
}

Deixamos o getter com uma mensagem �xa, mas poderiamos ter algum atributo que de�ne os detalhes do Fault . Ao testar o

serviço aparece na resposta SOAP o nome AutorizacaoFault com a informação Token invalido :

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <S:Fault xmlns:ns4="http://www.w3.org/2003/05/soap-envelope">
 <faultcode>S:Server</faultcode>
 <faultstring>Autorizacao falhou</faultstring>
 <detail>
 <ns2:AutorizacaoFault xmlns:ns2="http://ws.estoque.caelum.com.br/">Token invalido</ns2:AutorizacaoFault>
 </detail>
 </S:Fault>
 </S:Body>
</S:Envelope>

Ainda está um pouco inseguro com os Faults do mundo SOAP? Isso então é uma boa hora de praticar! Nos exercícios vamos

consolidar o aprendizado e veremos com mais detalhes os cabeçalhos e Faults. Mãos a obra!

O que você aprendeu nesse capítulo?

Cabeçalhos servem para guardar informações dados da aplicação

o elemento Header vem antes do Body

A anotação @WebParam serve para de�nir o Header

Exceptions são mapeadas para Faults

12/07/2017 JAX-WS : Aula 3 - Atividade 2 Trabalhando com cabeçalhos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/web-services-soap/task/9834 8/8

