
Inheritance
Quiz

Code with Mosh (codewithmosh.com)

1st Edition

http://codewithmosh.com

About the Author
  

 Hi! My name is Mosh Hamedani. I’m a software engineer
with two decades of experience and I’ve taught over three
million people how to code or how to become a professional
software engineer. It’s my mission to make software  

 engineering simple and accessible to everyone.

https://codewithmosh.com

https://youtube.com/user/programmingwithmosh

https://twitter.com/moshhamedani

https://facebook.com/programmingwithmosh/

Questions 3 ...
Answers 6..

https://codewithmosh.com
https://www.youtube.com/user/programmingwithmosh
https://twitter.com/moshhamedani
https://www.facebook.com/programmingwithmosh/

Questions
 
1- How can we have ClassA inherit from ClassB?

a) class ClassA inherits ClassB

b) class ClassA extends ClassB

c) class ClassA : ClassB

d) class ClassA implements ClassB

2- What will be printed on the console and why?

var point1 = new Point(1, 2);

var point2 = new Point(1, 2);

System.out.println(point1.equals(point2));

3- What does hashCode() method of the Object class return?

4- What is a default constructor?

5- How can we add a constructor to the Customer class?

a) public Customer(String name) { }

b) public void Customer(String name) {}

c) public Constructor(String name) {}

d) public void Constructor(String name) {}

6- What is the super keyword?

7- What is the difference between private and protected access
modifiers?

8- How accessible is a field or method if it’s declared without an access
modifier?

9- What is method overriding? How is it different from method
overloading?

10- What is the benefit of applying the @Override annotation when
overriding a method?

11- The Customer class inherits from the User class. Can we pass a
Customer object to this method? Why?

public void print(User user) {}

12- What is the usage of the instanceof operator?

13- What are the four principles of object-oriented programming?

14- When do we use abstract classes?

15- Can we have an abstract class without any abstract methods?

16- When do we use final classes?

17- What is the diamond problem?

18- Does Java support multiple inheritance?

Answers 

1- B

2- False - even though point1 and point2 have the same coordinates, the
default implementation of the equals() method compares objects for
reference equality. These two objects are in two different locations in
memory, that’s why the equals() method returns false.

3- The hashCode() methods returns a numeric value that is calculated
based on the address of the object in memory.

4- A constructor without any parameters. If we don’t create it, the Java
compiler will automatically add one to our classes.

5- A - constructors don’t have a return type, not even void.

6- The super keyword is a reference to the base or parent class. We can
use it to access the members (fields and methods) or call the
constructors of the base class. In contrast, the this keyword returns a
reference to the current object.

7- Members marked with protected or private access modifiers are
only accessible inside of a class. Protected members are inherited and
are accessible by child (derived) classes. Private members are not.

8- If we omit the access modifier, the member will have the default
access modifier which makes that member public in package. In other
words, that member will be public in the package but private outside of
the package.

9- Method overriding means changing the implementation of an
inherited method in a subclass. For example, we can override the
equals() or hashCode() methods of the Object class. Method
overloading means declaring a method with different signatures
(different number, type and order of parameters).

10- It signals the Java compiler that we’re overriding a method in the
base class and this helps the compiler check our code for correctness. It
will ensure the signature of the method in the subclass matches the on
declared in the base class. Also, if we remove this method from the base
class, the compiler will let us know and we can remove the method in
the subclass as well.

11- Yes. We can pass an instance of any classes that inherit directly or
indirectly from the User class. In this case, the customer object will get
automatically upcast (meaning it’ll get converted to its base type - User).
If we need to work with members of the customer object in this method,
we need to explicitly downcast it by prefixing the object with
(Customer).

12- It tells us if an object is an instance of a class. We use it before
casting an object to a different type to make sure we don’t get a casting
exception.

13- The four principles of object-oriented programming are:

- Encapsulation: bundling the data and operations on the data inside
a single unit (class).

- Abstraction: reducing complexity by hiding unnecessary details
(metaphor: the implementation detail of a remote control is hidden
from us. We only work with its public interface.)

- Inheritance: a mechanism for reusing code.

- Polymorphism: a mechanism that allows an object to take many
forms and behave differently. This will help us build extensible
applications.

14- An abstract class is a partially-implemented (half-cooked) class. We
cannot instantiate them. But we use them to share some common code
across their subclasses.

15- Yes! An abstract class does not need abstract methods. But if we
mark a method as abstract, we should mark the class as abstract as well.

16- Final classes cannot be inherited. We use them when we’ve made
certain assumptions about a class and we want to prevent other classes
extending our class and break those assumptions.

17- The diamond problem happens in languages that support multiple
inheritance. If two classes (B, C) derive from A and are also the parents

of another class (D), we see a diamond. If the top class (A) declares a
method (eg toString) and its children (B and C) override this method,
it’s not clear which implementation will be inherited by D.

18- No.

