4 DEVSUPERIOR

Formacao Desenvolvedor Moderno
Modulo: Back end

Capitulo: Modelo de dominio e ORM

https://devsuperior.com.br

Estudos prévios necessarios:

Revisdo Algebra Relacional e SQL
Pra qué? Para relembrar as operagdes basicas com SQL.

https://www.youtube.com/watch?v=GHpE5xOxXXI

Super revisdo de 00 e SQL com Java e JDBC

Pra qué? Para que vocé compreenda na pratica como é consultar os dados de um banco de dados
somente com Java e JDBC, sem utilizar uma ferramenta ORM (Mapeamento Objeto-Relacional).

https://www.youtube.com/watch?v=xC yKw3MYX4

Nivelamento ORM - JPA e Hibernate

Pra qué? Para que vocé tenha uma introdugdo tedrica e pratica sobre ORM com JPA, antes de ir direto
para o Spring com o Spring Data JPA.

https://www.youtube.com/watch?v=CAP1IPgelkw

Sistema DSCommerce

Documento de requisitos:

https://drive.google.com/drive/folders/1WTBggtq38cLeeQosPHjuhjSLxa94Lmx

Product

- <<pk>>id: Long
- name : String

- products

- orders

Order

- description : String
- price : Double
- imgUrl : String

* |- products

* | - categories

Category

- <<pk>>id:Long
- name : String

1>

Orderitem

- quantity : Integer
- price : Double

*

- <<pk>>id:Long
- moment : Instant
- status : OrderStatus

- orders

- client

User

- <<pk>>id: Long
- name : String
- email : String

1 | - order
0.1 |- payment
Payment

- <<pk>>id: Long
- moment : Instant

*

1

- phone : String

- birthDate : LocalDate
- password : String
-roles : String[]

<<enum=>
OrderStatus

- WAITING_PAYMENT : int
-PAID :int

- SHIPPED : int

- DELIVERED : int

- CANCELED : int

Banco de dados H2, entidade User

spring.profiles.active=test

spring.

jpa.open-in-view=false

spring.
spring.
spring.
spring.

spring.
spring.

spring.
spring.
spring.
spring.

datasource.
.url=jdbc:h2:mem:testdb
datasource.
datasource.

datasource

h2.console.
.path=/h2-console

h2.console

driverClassName=org.h2.Driver

username=sa
password=

enabled=true

jpa.database-platform=org.hibernate.dialect.H2Dialect
jpa.defer-datasource-initialization=true
jpa.show-sql=true
jpa.properties.hibernate.format_sql=true

Recomendacao para campo tipo Instant

@Column(columnDefinition = "TIMESTAMP WITHOUT TIME ZONE")
private Instant moment;

Caso precise aprender sobre data-hora em Java (LocalDate, LocalDateTime

e Instant):
https://www.youtube.com/watch?v=WnJUI-MQGE

Relacionamento muitos-para-um

public class Order {

@ManyToOne
@JoinColumn(name = "client_id")
private User client;

public class User {

@0neToMany (mappedBy = "client")
private List<Order> orders = new ArraylList<>();

Relacionamento um-para-um

public class Payment {

@OneToOne
@MapsId
private Order order;

public class Order {

@0neToOne(mappedBy = "order", cascade = CascadeType.ALL)
private Payment payment;

Relacionamento muitos-para-muitos

public class Product {

@ManyToMany

@JoinTable(name = "tb_product_category”,
joinColumns = @JoinColumn(name = "product_id"),
inverseJoinColumns = @JoinColumn(name = "category_id"))

private Set<Category> categories = new HashSet<>();

public class Category {

@ManyToMany (mappedBy = "categories")
private Set<Product> products = new HashSet<>();

Muitos-para-muitos com classe de associacao

@Embeddable

public class OrderItemPK {
@ManyToOne
@JoinColumn(name = "order_id")

private Order order;

@ManyToOne
@JoinColumn(name = "product_id")
private Product product;

@Entity
@Table(name = "tb_order_item")
public class OrderItem {

@EmbeddedId
private OrderItemPK id = new OrderItemPK();

private Integer quantity;
private Double price;

public OrderItem() {
}

public OrderItem(Order order, Product product, Integer quantity, Double price) {
id.setOrder(order);
id.setProduct(product);
this.quantity = quantity;
this.price = price;

¥

public Order getOrder() {
return id.getOrder();

¥

public void setOrder(Order order) {
id.setOrder(order);

}

10

10

Muitos-para-muitos com classe de associacao

public class Order {

@0OneToMany(mappedBy = "id.order")
private Set<OrderItem> items = new HashSet<>();

public Set<OrderItem> getItems() {
return items;

}

public List<Product> getProducts() {

return items.stream().map(x -> x.getProduct()).toList();

}

public class Product {

@0OneToMany(mappedBy = "id.product")
private Set<OrderItem> items = new HashSet<>();

public Set<OrderItem> getItems() {
return items;

}

public List<Order> getOrders() {
return items.stream().map(x -> x.getOrder()).toList();

}

11 :
Seeding da base de dados
- Arquivo na pasta resources: import.sql
- Utilizar um INSERT por registro
- Script:
https://gist.github.com/acenelio/664c3508edd4d418d566ed86179fdf8b

12

