
Formação Desenvolvedor Moderno
Módulo: Back end
Capítulo: Modelo de domínio e ORM

https://devsuperior.com.br

Estudos prévios necessários:

Revisão Álgebra Relacional e SQL

Pra quê? Para relembrar as operações básicas com SQL.

https://www.youtube.com/watch?v=GHpE5xOxXXI

Super revisão de OO e SQL com Java e JDBC

Pra quê? Para que você compreenda na prática como é consultar os dados de um banco de dados
somente com Java e JDBC, sem utilizar uma ferramenta ORM (Mapeamento Objeto-Relacional).

https://www.youtube.com/watch?v=xC_yKw3MYX4

Nivelamento ORM - JPA e Hibernate

Pra quê? Para que você tenha uma introdução teórica e prática sobre ORM com JPA, antes de ir direto
para o Spring com o Spring Data JPA.

https://www.youtube.com/watch?v=CAP1IPgeJkw
2

1

2

Sistema DSCommerce

Documento de requisitos:

https://drive.google.com/drive/folders/1WTBggtq38cLeeQosPHjuhjSLxa94Lmx_

3

4

3

4

Banco de dados H2, entidade User

5

Dados de conexão com o banco H2
spring.datasource.driverClassName=org.h2.Driver
spring.datasource.url=jdbc:h2:mem:testdb
spring.datasource.username=sa
spring.datasource.password=

H2 Client
spring.h2.console.enabled=true
spring.h2.console.path=/h2-console

JPA, SQL
spring.jpa.database-platform=org.hibernate.dialect.H2Dialect
spring.jpa.defer-datasource-initialization=true
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format_sql=true

spring.profiles.active=test

spring.jpa.open-in-view=false

Recomendação para campo tipo Instant

6

@Column(columnDefinition = "TIMESTAMP WITHOUT TIME ZONE")
private Instant moment;

Caso precise aprender sobre data-hora em Java (LocalDate, LocalDateTime
e Instant):
https://www.youtube.com/watch?v=WnJUI-jMQGE

5

6

Relacionamento muitos-para-um

7

public class User {
...

@OneToMany(mappedBy = "client")
private List<Order> orders = new ArrayList<>();

public class Order {
...

@ManyToOne
@JoinColumn(name = "client_id")
private User client;

Relacionamento um-para-um

8

public class Order {

...

@OneToOne(mappedBy = "order", cascade = CascadeType.ALL)
private Payment payment;

public class Payment {

...

@OneToOne
@MapsId
private Order order;

7

8

Relacionamento muitos-para-muitos

9

public class Category {

...

@ManyToMany(mappedBy = "categories")
private Set<Product> products = new HashSet<>();

public class Product {

...

@ManyToMany
@JoinTable(name = "tb_product_category",

joinColumns = @JoinColumn(name = "product_id"),
inverseJoinColumns = @JoinColumn(name = "category_id"))

private Set<Category> categories = new HashSet<>();

Muitos-para-muitos com classe de associação

10

@Embeddable
public class OrderItemPK {

@ManyToOne
@JoinColumn(name = "order_id")
private Order order;

@ManyToOne
@JoinColumn(name = "product_id")
private Product product;

...

@Entity
@Table(name = "tb_order_item")
public class OrderItem {

@EmbeddedId
private OrderItemPK id = new OrderItemPK();

private Integer quantity;
private Double price;

public OrderItem() {
}

public OrderItem(Order order, Product product, Integer quantity, Double price) {
id.setOrder(order);
id.setProduct(product);
this.quantity = quantity;
this.price = price;

}

public Order getOrder() {
return id.getOrder();

}

public void setOrder(Order order) {
id.setOrder(order);

}

...

9

10

Muitos-para-muitos com classe de associação

11

public class Order {

...

@OneToMany(mappedBy = "id.order")
private Set<OrderItem> items = new HashSet<>();

...

public Set<OrderItem> getItems() {
return items;

}

public List<Product> getProducts() {
return items.stream().map(x -> x.getProduct()).toList();

}

public class Product {

...

@OneToMany(mappedBy = "id.product")
private Set<OrderItem> items = new HashSet<>();

...

public Set<OrderItem> getItems() {
return items;

}

public List<Order> getOrders() {
return items.stream().map(x -> x.getOrder()).toList();

}

Seeding da base de dados

• Arquivo na pasta resources: import.sql

• Utilizar um INSERT por registro

• Script:
https://gist.github.com/acenelio/664c3508edd4d418d566ed86179fdf8b

12

11

12

