
23/04/2020 Java e XML: Aula 7 - Atividade 2 Mapeando objeto para um XML | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/xml-java/task/12499 1/2

 02
Mapeando objeto para um XML

Transcrição

No último vídeo aprendemos a mapear um arquivo XML para um objeto, e agora tentaremos gerar um XML a partir de

um objeto Venda . Nesse processo, continuaremos utilizando a nossa classe MapeaXMLDireto , pois ainda estamos

realizando o mapeamento de um XML, mas separaremos nossas ações em dois métodos: xmlParaObjeto() e

objetoParaXml() , com ambos recebendo um objeto jaxbContext como argumento. O método xmlParaObjeto()

receberá grande parte da lógica que criamos no vídeo anterior.

public class MapeiaXMLDireto {
 public static void main(String[] args) throws Exception {
 JAXBContext jaxbContext = JAXBContext.newInstance(Venda.class);

 xmlParaObjeto(jaxbContext);
 objetoParaXml(jaxbContext);
 }

 private static void objetoParaXml(JAXBContext jaxbContext) throws Exception {

 }

 private static void xmlParaObjeto(JAXBContext jaxbContext) throws Exception {
 Unmarshaller unmarshaller = jaxbContext.createUnmarshaller();

 Venda venda = (Venda) unmarshaller.unmarshall(new File("src/vendas.xml"));
 System.out.println(venda);
 }
}

No método objetoParaXml() , utilizaremos o objeto jaxbContext para chamarmos o método createMarshaller() , que

criará uma classe capaz de mapear um objeto para um XML. Associaremos o retorno a uma variável local marshaller e,

a partir dela, chamaremos o método marshall() , passando como argumento o objeto com o qual estamos trabalhando,

Venda .

Após instanciarmos a Venda , chamaremos o método setFormaDePagamento() com o texto "Crediario". Também

criaremos uma lista de produtos recebendo uma instância de ArrayList<> , e adicionaremos alguns produtos a ela com

produtos.add() . Aproveitaremos o momento de criação do produto para passarmos o nome e o preço. Por �m,

chamaremos venda.setProdutos() e passaremos nossos produtos ao objeto venda que criamos anteriormente.

Passaremos a venda como primeiro argumento do método marshal() . Como segundo argumento, ele pede um

"writer", que é basicamente um local para escrever o resultado da conversão. Poderíamos escrever um arquivo, mas

optaremos por imprimir no console. Para isso, criaremos uma instância de StringWriter e a passaremos como

argumento do método. Por �m, faremos um System.out.println() de writer.toString() .

private static void objetoParaXml(JAXBContext jaxbContext) throws Exception {
 Marshaller marshaller = jaxbContext.createMarshaller();
 Venda venda = new Venda();
 venda.setFormaDePagamento("Crediario");

23/04/2020 Java e XML: Aula 7 - Atividade 2 Mapeando objeto para um XML | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/xml-java/task/12499 2/2

 List<Produto> produtos = new ArrayList<>();
 produtos.add(new Produto("Livro de java", 59.90));
 produtos.add(new Produto("Livro de xml", 59.90));
 produtos.add(new Produto("Livro de O.O.", 59.90));
 venda.setProdutos(produtos);
 StringWriter writer = new StringWriter();

 marshaller.marshal(venda, writer);
 System.out.println(writer.toString());

}

Executando nosso código, teremos como retorno o arquivo XML gerado, com as tags <venda> , <formaDePagamento>

(com o valor "Crediario") e <produtos> , além de cada <produto> individual criado e as tags de seus respectivos

atributos (<nome> e <preco>). Assim, conseguimos mapear uma classe para um arquivo XML de maneira relativamente

simples.

Parabéns! Você concluiu o curso de Java e XML da Alura. Esperamos que você tenha gostado e, se tiver qualquer dúvida,

não deixe de fazer uma postagem lá no fórum. Bons estudos e até a próxima!

