03/07/2018 Python 3: Aula 5 - Atividade 12 Maos na massa | Alura - Cursos online de tecnologia

o 12

Chegou a hora de vocé por em pratica o que foi visto na aula. Para isso, execute os passos listados abaixo.

Na tltima aula, o cddigo acabou ficando sem heranca, mas perdeu algumas funcionalidades do Python, como poder usar o

for in, in eo len.

1) Para conseguir continuar com as vantagens do polimorfismo sem precisar herdar a classe list , faga o seguinte, altere a

classe Playlist para:

class Playlist():
def __init__ (self, nome, programas):
self.nome = nome
self._programas = programas

def _ getitem__ (self, item)
return self._ programas[item]

@property
def listagem(self):
return self._programas

@property
def tamanho(self):
return len(self._programas)

2) Apenas com esta alteracgo, vocé consegue agora iterar sobre a Playlist , sem acessar a listagem como antes:

for programa in minha_playlist:
print(programa)

No Python, n#o é preciso herdar de uma classe especifica pra ter polimorfismo. O que é importante no Python é: se vocé

quer um iteravel, devo se preocupar com o que um iteravel deve fazer.

O nome dessa caracteristica é duck typing.

3) Serd que d4 para alterar a classe de outra forma para suportar também o len , ao invés de ter que acessar o

método/property tamanho ? Sim! Faca o seguinte:

class Playlist():
def __init__ (self, nome, programas):
self.nome = nome
self._programas = programas

def _ getitem_ (self, item)
return self._programas[item]

def __len_ (self):
return len(self._programas)

https://cursos.alura.com.br/course/python-3-avancando-orientacao-objetos/task/42408

12



03/07/2018 Python 3: Aula 5 - Atividade 12 Maos na massa | Alura - Cursos online de tecnologia

Desta forma, vocé consegue chamar len(minha_playlist) , ja que Playlist implementa _ len_ .Issotornaa Playlist um

Sized (alguém que implementa _ len_ ).

Observagdo: Vocé nio precisa mais dos métodos/propriedades listagem e tamanho , entdo pode apagar :)

4) Com duck typing, vocé ganha muita flexibilidade ao ndo precisar ficar preso aos tipos dos objetos, s6 que em alguns

momentos vocé pode querer ter restricdes, como de uma garantia que uma classe implemente os métodos que vocé quer.
Em outras linguagens, hd a ideia de classes e métodos abstratos, que forcam as classes filhas a implementar alguns métodos.

Para fazer o mesmo no Python, é possivel usar classes abstratas, as chamadas ABC (Abstract Base Classes). Existem classes ja

prontas que ajudam nessa ideia.

Para exemplificar, crie um novo arquivo com o nome testeAbc.py, para teste, com o seguinte contetido e execute-o:

from collections.abc import MutableSequence

class MinhalListinhaMutavel(MutableSequence):
pass

Vocé vai perceber que ndo acontece nada quando apenas este codigo é executado.

5) A classe MinhalListinhaMutavel herda de MutableSequence , ou seja, é desejavel que o Python avise que tem que

implementar todos os métodos abstratos de uma MutableSequence . S6 que parece que ndo funcionou.

Como Python é uma linguagem de tipagem dindmica, ndo da pra ter essa garantia s6 percorrendo o codigo de definicdo da

classe. O que dd pra fazer é validar os métodos em tempo de instanciagéo. Adicione o cédigo abaixo e teste novamente:

objetovalidado = MinhalListinhaMutavel()
print(objetovalidado)

Agora dd um erro, dizendo que vocé esqueceu de implementar todos os métodos necessarios para tornar a classe uma

MutableSequence .

Sempre que vocé quiser garantir a implementagdo de alguns métodos, pode recorrer as classes ja existentes em

collections.abc e outros pacotes também.

https://cursos.alura.com.br/course/python-3-avancando-orientacao-objetos/task/42408 2/2



