
03/07/2018 Python 3: Aula 5 - Atividade 12 Mãos na massa | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/python-3-avancando-orientacao-objetos/task/42408 1/2

 12
Mãos na massa

Chegou a hora de você pôr em prática o que foi visto na aula. Para isso, execute os passos listados abaixo.

Na última aula, o código acabou �cando sem herança, mas perdeu algumas funcionalidades do Python, como poder usar o

for in , in e o len .

1) Para conseguir continuar com as vantagens do polimor�smo sem precisar herdar a classe list , faça o seguinte, altere a

classe Playlist para:

class Playlist():
 def __init__(self, nome, programas):
 self.nome = nome
 self._programas = programas

 def __getitem__(self, item)
 return self._programas[item]

 @property
 def listagem(self):
 return self._programas

 @property
 def tamanho(self):
 return len(self._programas)

2) Apenas com esta alteração, você consegue agora iterar sobre a Playlist , sem acessar a listagem como antes:

for programa in minha_playlist:
 print(programa)

No Python, não é preciso herdar de uma classe especí�ca pra ter polimor�smo. O que é importante no Python é: se você

quer um iterável, devo se preocupar com o que um iterável deve fazer.

O nome dessa característica é duck typing.

3) Será que dá para alterar a classe de outra forma para suportar também o len , ao invés de ter que acessar o

método/property tamanho ? Sim! Faça o seguinte:

class Playlist():
 def __init__(self, nome, programas):
 self.nome = nome
 self._programas = programas

 def __getitem__(self, item)
 return self._programas[item]

 def __len__(self):
 return len(self._programas)

03/07/2018 Python 3: Aula 5 - Atividade 12 Mãos na massa | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/python-3-avancando-orientacao-objetos/task/42408 2/2

Desta forma, você consegue chamar len(minha_playlist) , já que Playlist implementa __len__ . Isso torna a Playlist um

Sized (alguém que implementa __len__).

Observação: Você não precisa mais dos métodos/propriedades listagem e tamanho , então pode apagar :)

4) Com duck typing, você ganha muita �exibilidade ao não precisar �car preso aos tipos dos objetos, só que em alguns

momentos você pode querer ter restrições, como de uma garantia que uma classe implemente os métodos que você quer.

Em outras linguagens, há a ideia de classes e métodos abstratos, que forçam as classes �lhas a implementar alguns métodos.

Para fazer o mesmo no Python, é possível usar classes abstratas, as chamadas ABC (Abstract Base Classes). Existem classes já

prontas que ajudam nessa ideia.

Para exempli�car, crie um novo arquivo com o nome testeAbc.py, para teste, com o seguinte conteúdo e execute-o:

from collections.abc import MutableSequence

class MinhaListinhaMutavel(MutableSequence):
 pass

Você vai perceber que não acontece nada quando apenas este código é executado.

5) A classe MinhaListinhaMutavel herda de MutableSequence , ou seja, é desejável que o Python avise que tem que

implementar todos os métodos abstratos de uma MutableSequence . Só que parece que não funcionou.

Como Python é uma linguagem de tipagem dinâmica, não dá pra ter essa garantia só percorrendo o código de de�nição da

classe. O que dá pra fazer é validar os métodos em tempo de instanciação. Adicione o código abaixo e teste novamente:

objetoValidado = MinhaListinhaMutavel()
print(objetoValidado)

Agora dá um erro, dizendo que você esqueceu de implementar todos os métodos necessários para tornar a classe uma

MutableSequence .

Sempre que você quiser garantir a implementação de alguns métodos, pode recorrer às classes já existentes em

collections.abc e outros pacotes também.

