
25/04/2020 Ruby on Rails 3 parte II: Aula 5 - Atividade 2 Adicionando comentários via AJAX | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571 1/10

 02
Adicionando comentários via AJAX

Adicionando comentários via AJAX

No último capítulo aprendemos a identi�car e solucionar os problemas de performance mais comuns em aplicações

Rails: consultas N+1 e counter caches. Terminamos discutindo sobre comentários na aplicação, e hoje vamos continuar

falando sobre eles, tornando o envio de comentários mais dinâmico utilizando AJAX. Vamos lá!

Formulários remotos

O principal motivo para tornar o formulário de envio de comentário mais dinâmico é a melhoria na usabilidade da

aplicação para o usuário �nal, já que a página não será recarregada a cada comentário enviado. Desta forma, o usuário

tem uma percepção de que a aplicação responde muito mais rapidamente, enquanto utilizamos AJAX através de

JavaScript para enviar os dados do formulário para o servidor.

Nosso primeiro passo será indicar para o Rails que o formulário de comentários deverá ser submetido via AJAX ao invés

de uma requisição normal. Abra o formulário de envio de comentários em app/views/comments/_form.html.erb, e

adicione a opção remote: true ao form_for :

<%= form_for [@job, Comment.new], html: { class: 'form-horizontal' }, remote: true do |f| %>

Vamos testar o que acontece pelo navegador, tenha a certeza de estar rodando o servidor do Rails e acesse a página de

um job, como http://localhost:3000/jobs/1 (http://localhost:3000/jobs/1). Preencha os campos do comentário e clique em

Send : aparentemente nada aconteceu, certo? Agora recarregue a página e olhe para o �nal da lista de comentários: seu

novo comentário deverá estar aparecendo lá!

http://localhost:3000/jobs/1

25/04/2020 Ruby on Rails 3 parte II: Aula 5 - Atividade 2 Adicionando comentários via AJAX | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571 2/10

Se checarmos o log do servidor, veremos que foi recebida uma requisição POST em /jobs/1/comments , para criar o

novo comentário:

Perceba que a segunda linha do log, Processing by CommentsController#create as JS , identi�ca que o Rails reconheceu

essa requisição como JS , ou seja, através de uma requisição AJAX, e criou o comentário no banco de dados

normalmente. Maravilha! Não tivemos que escrever nenhum JavaScript para que nosso formulário seja

automaticamente enviado via AJAX. Mas �ca a dúvida: como isso funciona?

Rails, jQuery, e Unobtrusive JavaScript

O Rails já possui algumas funcionalidades integradas com JavaScript para tornar nossa vida mais fácil, e uma delas é o

envio de formulários através de requisições AJAX apenas utilizando a opção remote: true .

Para entendermos um pouco melhor como isso funciona por baixo dos panos, vamos utilizar o painel de desenvolvedor

do Google Chrome como no capítulo 2. Acesse a mesma página do job que acessamos antes, agora pelo Chrome, e abra

o painel (Ctrl + Shi� + C para PC, ou Cmd + Option + C para Mac). Clique na aba Elements, que mostra o HTML completo

da página da forma como ele é visto pelo navegador, e então localize o botão com uma lupa na parte inferior do painel:

este botão serve para inspecionar um elemento, ou seja, encontrar este elemento na página para que possamos veri�car

seu HTML. Clique na lupa, e então mova o cursor do mouse para a página: conforme você for movendo o cursor sobre

os elementos, eles serão selecionados, e você pode clicar para inspecionar o elemento. Localize o formulário de envio

de comentários e clique nele, ele deverá ser marcado no HTML sendo exibido na aba Elements, e deve ser algo como:

Started POST "/jobs/1/comments" for 127.0.0.1 at 2013-02-19 10:37:35 -0300
Processing by CommentsController#create as JS
 Parameters: {"utf8"=>"", "authenticity_token"=>"q9MdFOkB8fSefI9tkIA0dO1oOZw+Z+byKao5M4Yufqs=",
 Job Load (0.1ms) SELECT "jobs".* FROM "jobs" WHERE "jobs"."id" = ? LIMIT 1 [["id", "1"]]
 (0.0ms) begin transaction
 SQL (0.5ms) INSERT INTO "comments" ("body", "created_at", "job_id", "name", "updated_at") VAL
 Job Load (0.1ms) SELECT "jobs".* FROM "jobs" WHERE "jobs"."id" = 1 LIMIT 1
 SQL (0.1ms) UPDATE "jobs" SET "comments_count" = COALESCE("comments_count", 0) + 1 WHERE "job
 (6.4ms) commit transaction
Redirected to http://localhost:3000/jobs/1
Completed 302 Found in 14ms (ActiveRecord: 7.2ms)

<form accept-charset="UTF-8" action="/jobs/1/comments" class="form-horizontal" data-remote="true

25/04/2020 Ruby on Rails 3 parte II: Aula 5 - Atividade 2 Adicionando comentários via AJAX | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571 3/10

Note que existe um atributo chamado data-remote com o valor true . Este atributo é adicionado pelo Rails quando

passamos a opção remote: true para o formulário, e é através dessa indicação que o Rails sabe que deve manipular o

envio deste formulário por AJAX. Mas como essa manipulação é feita?

O Rails utiliza por padrão a biblioteca jQuery (http://jquery.com/), muito utilizada em aplicações web, para manipulação

de elementos na página através de JavaScript. Além disso, o Rails possui um JavaScript próprio, especialmente escrito

para se integrar com o jQuery, que adiciona funcionalidades como o envio de formulários com AJAX através da opção

remote . Esse JavaScript próprio do Rails é conhecido como o adaptador jQuery para Rails, ou simplesmente jquery-

rails (http://github.com/rails/jquery-rails), e existem outros adaptadores que se integram com bibliotecas diferentes.

Abra o Gem�le e você verá uma linha que contém a gem jquery-rails , que traz o jQuery e o JavaScript do Rails para a

nossa aplicação. Você pode conferir essas duas bibliotecas sendo importadas no arquivo

app/assets/javascripts/application.js, que contém as linhas:

//= require jquery
//= require jquery_ujs

Esse arquivo adiciona o jquery e o jquery_ujs (o adaptador) à nossa aplicação, e é referenciado no layout

app/views/layouts/application.html.erb, ao �nal da página:

<%= javascript_include_tag "application" %>

Isto inclui o application.js em todas as nossas páginas, e com isso, quando a página do job é exibida, o JavaScript do

Rails identi�ca que nosso formulário possui o atributo data-remote=true , e altera o envio dele para que seja feito

através de AJAX. Desta forma, o Rails não precisa encher o HTML com código JavaScript para manipular o formulário,

pois o próprio JavaScript se encarregará de integrar a funcionalidade nos formulários que forem identi�cados com a

opção data-remote . Essa técnica é conhecida como Unobtrusive JavaScript, e permite que mantenhamos nossas

páginas mais limpas contendo somente HTML, e utilizemos JavaScript para adicionar funcionalidades que melhoram a

http://jquery.com/
http://github.com/rails/jquery-rails

25/04/2020 Ruby on Rails 3 parte II: Aula 5 - Atividade 2 Adicionando comentários via AJAX | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571 4/10

usabilidade para o usuário �nal. Também é devido ao título Unobtrusive JavaScript que o nome do arquivo JavaScript do

Rails é jquery_ujs.

Ótimo, agora que entendemos como o Rails modi�cou o envio do nosso formulário para usar AJAX, precisamos dar

feedback para o usuário de que o comentário foi enviado com sucesso ou se alguma validação falhou, caso contrário ele

pode pensar que a aplicação está com problemas e seu comentário não está sendo enviado.

Respondendo à requisições AJAX no controller com respond_to

Antes de fazermos qualquer alteração, precisamos descobrir como o Rails está respondendo à nossa requisição AJAX.

Abra a aba Network no painel do Chrome, que exibe todas as requisições que a página executa, e então envie um novo

comentário através do formulário. Você deverá ver duas requisições acontecendo: a primeira é o envio do comentário

em si, uma requisição POST para /jobs/1/comments , que foi completada e redirecionou para a página do job, /jobs/1 ,

causando a segunda requisição.

Perfeito, a requisição AJAX está acontecendo, porém temos essa segunda requisição que é necessária quando enviamos

o comentário normalmente, mas se faz desnecessária quando enviamos via AJAX. Isto quer dizer que o Rails está

recebendo com sucesso a requisição AJAX como observamos no log, porém ele não sabe responder a essa requisição de

maneira especí�ca, então ele responde da mesma forma que uma requisição normal, causando o redirecionamento.

Vamos tratar isso adicionando um bloco respond_to à action responsável por criar comentários, que permitirá

de�nirmos uma resposta especí�ca para a requisição AJAX, dessa forma evitando esse redirecionamento

desnecessário. Você deve lembrar de ter visto o respond_to em outros controllers, pois ele é automaticamente gerado

pelo Rails através do scaffold. Por exemplo, abra o app/controllers/jobs_controller.rb e localize a action index:

def index
 @jobs = Job.most_recent.includes(:company).all

 respond_to do |format|
 format.html # index.html.erb

25/04/2020 Ruby on Rails 3 parte II: Aula 5 - Atividade 2 Adicionando comentários via AJAX | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571 5/10

 format.json { render json: @jobs }
 end
end

O respond_to recebe um bloco com o argumento format , que neste caso responde para html (o padrão quando não

há respond_to), e também json . No caso de comentários, vamos responder para html da mesma forma que

respondemos atualmente, e também para js de JavaScript, para manipularmos a resposta à requisição AJAX. Dessa

forma garantimos que o envio de comentários funcionará como antes quando não for possível utilizar JavaScript. Abra o

app/controllers/comments_controller.rb, e altere a action create conforme abaixo:

def create
 @job = Job.find(params[:job_id])
 @comment = @job.comments.build(params[:comment])

 respond_to do |format|
 format.html do
 if @comment.save
 flash[:notice] = "Comment was created with success!"
 else
 flash[:alert] = "Please fill in all fields to create a comment."
 end
 redirect_to @job
 end
 format.js do
 @comment.save
 end
 end
end

Mantemos a resposta html com o código anterior que vai efetuar o redirect, e no caso da requisição AJAX, apenas

salvamos o comentário. Porém, apenas salvar o comentário evitando o redirecionamento não é su�ciente: precisamos

dar feedback para o usuário se o comentário foi criado com sucesso ou não. Para isso, vamos criar uma nova view em

app/views/comments, chamada create.js.erb, que será automaticamente renderizada pela nossa action create quando

responder por js , com o seguinte conteúdo para �ns de teste:

alert('it works!');

Perceba que o nome da view contém .js ao invés de .html , pois esse é o formato da requisição que estamos

respondendo. Note também que escrevemos JavaScript nesta view e não HTML, pois é o formato de resposta esperado

pela requisição AJAX, e dessa forma conseguiremos escrever código JavaScript para manipular o conteúdo da página.

Vamos testar isto no navegador, atualize a página do job e tente enviar um comentário preenchendo todos os campos:

você deverá receber a mensagem alert , indicando que tudo funcionou com sucesso!

25/04/2020 Ruby on Rails 3 parte II: Aula 5 - Atividade 2 Adicionando comentários via AJAX | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571 6/10

Perfeito! Basta agora escrevermos o JavaScript necessário para dar algum feedback ao usuário. Modi�que o conteúdo da

view conforme abaixo:

<% if @comment.errors.empty? %>
 $('#comments').append('<%=j render(@comment) %>');
 $('#new_comment')[0].reset();
 alert('Comment was created with success!');
<% else %>
 alert('Please fill in all fields to create a comment.');
<% end %>

O código é simples: primeiro checamos se o comentário possui algum erro, e caso não, renderizamos o comentário com

render(@comment) , que vai renderizar a partial app/views/comments/_comment.html.erb, e adicionamos esse conteúdo

HTML à lista de comentários que já existirá na página. Precisamos utilizar o helper j , que é um simples atalho para

escape_javascript , e que tem como objetivo escapar o conteúdo HTML, como aspas por exemplo, para que possa ser

inserido corretamente no meio do comando JavaScript. Depois resetamos o conteúdo do formulário para limpar os

campos, e mostramos uma mensagem para o usuário informando que o comentário foi criado com sucesso. Caso o

comentário não tenha sido salvo, mostramos uma mensagem pedindo que todos os campos sejam preenchidos.

Agora só precisamos adicionar o div com o id #comments à página, pois ele ainda não existe, para que o nosso

comentário seja inserido no lugar correto pelo JavaScript. Abra app/views/jobs/show.html.erb e altere a seção de

comentários como abaixo:

<h2>Comments</h2>
<div id="comments">
 <%= render @job.comments %>
</div>

Pronto! Vamos testar se tudo está funcionando no navegador. Atualize a página do job e mantenha a aba Network aberta

no painel de desenvolvedor. Agora tente enviar um novo comentário preenchendo todos os campos: você deve receber

25/04/2020 Ruby on Rails 3 parte II: Aula 5 - Atividade 2 Adicionando comentários via AJAX | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571 7/10

uma mensagem de sucesso, e o comentário deve aparecer na listagem logo abaixo, indicando que tudo ocorreu bem.

E se você tentar enviar um comentário sem preencher algum campo, receberá uma mensagem de erro. Excelente!

Veri�que novamente o painel na aba Network, você perceberá que apenas uma requisição foi feita para cada tentativa

de enviar um comentário, ou seja, eliminamos o redirecionamento adicional que acontecia com sucesso!

25/04/2020 Ruby on Rails 3 parte II: Aula 5 - Atividade 2 Adicionando comentários via AJAX | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571 8/10

Ainda no painel, se você clicar sobre a primeira requisição para /jobs/1/comments, poderá observar uma série

informações importantes, como por exemplo na aba Headers podemos ver o método que foi utilizado: POST e o status

da resposta: 200, que indica sucesso.

E também na aba Response podemos ver o conteúdo que o servidor retornou, nesse caso o código JavaScript que

escrevemos e que foi executado no navegador ao receber essa resposta.

Além disso, a aba Cookies exibe os cookies que são enviados pelo navegador e recebidos de volta do servidor, neste caso

apenas o _job_board_session , como vimos no capítulo 2.

Podemos incrementar bastante o feedback para o usuário de acordo com a nossa imaginação, como por exemplo

removendo as mensagens alert e adicionando mensagens flash , mas isso �cará como um exercício para você.

E isso encerra o nosso capítulo. Aprendemos como enviar formulários via AJAX, e como o Rails faz uso de Unobtrusive

JavaScript integrando-se à biblioteca jQuery para nos dar algumas funcionalidades sem muito esforço. Também

descobrimos como manipular a resposta com base no tipo de requisição que estamos recebendo utilizando

respond_to , e a retornar código JavaScript em requisições AJAX, que será executado no navegador, permitindo que

manipulemos a página melhorando o feedback para o usuário. No capítulo seguinte noti�caremos empresas por email

quando comentários forem criados, não perca!

25/04/2020 Ruby on Rails 3 parte II: Aula 5 - Atividade 2 Adicionando comentários via AJAX | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571 9/10

Para saber mais

Em nossa aplicação estamos exibindo a listagem de comentários de um job na ordem em que eles estão sendo

criados, contudo é bastante comum que comentários sejam exibidos na ordem inversa, ou seja, os comentários

mais recentes aparecem no topo da lista. Você está encarregado de fazer essa alteração, basta adicionar uma

cláusula aos comentários sendo exibidos, ordenando-os através do campo id de forma decrescente, como abaixo:

@job.comments.order('id desc')

Isso deve ser feito na view jobs/show.html.erb.

Agora que os comentários são corretamente exibidos em ordem inversa, temos que alterar o JavaScript que é

executado ao criar um novo comentário, pois ele está sempre inserindo novos comentários ao �nal da lista,

lembra-se? Modi�que-o para inserir os comentários no começo da lista, alterando a view comments/create.js.erb

para chamar prepend ao invés de append na listagem de comentários. Pronto!

Com os comentários ordenados, descobrimos que é importante procurarmos não deixar consultas ao Active Record

como essa dentro de views, pois isso pode facilmente deixar nossas views bagunçadas e mais difíceis de serem

compreendidas. A maneira correta é movermos essas consultas para os controllers, que são os responsáveis por

esse tipo de trabalho, e utilizar variáveis de instância para enviar as informações necessárias para as views. Então

faça isso: mova o código que busca os comentários da view jobs/show.html.erb para a variável @comments no

controller jobs, action show, dessa forma:

def show
 @job = Job.find(params[:id])
 @comments = @job.comments.order('id desc')

 respond_to do |format|
 format.html # show.html.erb
 format.json { render json: @job }
 end
end

E utilize agora essa variável na view. Pronto! O código está refatorado e agora a view está mais limpa e simples de se

entender.

Na partial jobs/_job.html.erb, você poderá ver que o link Destroy possui uma opção data: { confirm: 'Are you

sure?' } . Essa opção funciona de forma similar ao remote: true , o JavaScript do Rails identi�ca links com o

atributo data-confirm e os manipula para mostrar a mensagem de con�rmação.

O helper link_to também possui a opção remote: true , que funciona de forma similar ao form_for , alterando o

clique do link para enviar uma requisição AJAX. Cheque a documentação do método

(http://api.rubyonrails.org/classes/ActionView/Helpers/UrlHelper.html#method-i-link_to) para mais informações.

http://api.rubyonrails.org/classes/ActionView/Helpers/UrlHelper.html#method-i-link_to

25/04/2020 Ruby on Rails 3 parte II: Aula 5 - Atividade 2 Adicionando comentários via AJAX | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571 10/10

Veja a documentação do método respond_to

(http://api.rubyonrails.org/classes/ActionController/MimeResponds.html#method-i-respond_to) para mais

exemplos de uso.

http://api.rubyonrails.org/classes/ActionController/MimeResponds.html#method-i-respond_to

