25/04/2020 Ruby on Rails 3 parte Il: Aula 5 - Atividade 2 Adicionando comentarios via AJAX | Alura - Cursos online de tecnologia

O o2
Adicionando comentarios via AJAX

Adicionando comentarios via AJAX

No ultimo capitulo aprendemos a identificar e solucionar os problemas de performance mais comuns em aplicagdes
Rails: consultas N+1 e counter caches. Terminamos discutindo sobre comentarios na aplicaco, e hoje vamos continuar

falando sobre eles, tornando o envio de comentarios mais dindmico utilizando AJAX. Vamos 14!

Formularios remotos

O principal motivo para tornar o formulario de envio de comentdrio mais dindmico é a melhoria na usabilidade da
aplicacdo para o usudrio final, ja que a pagina nio serd recarregada a cada comentario enviado. Desta forma, o usudrio
tem uma percepcao de que a aplicacdo responde muito mais rapidamente, enquanto utilizamos AJAX através de

JavaScript para enviar os dados do formulario para o servidor.

Nosso primeiro passo serd indicar para o Rails que o formuldrio de comentarios devera ser submetido via AJAX ao invés
de uma requisicdo normal. Abra o formulario de envio de comentarios em app/views/comments/_form.html.erb, e

adicione a op¢do remote: true ao form_for :

<%= form_for [@job, Comment.new], html: { class: 'form-horizontal' }, remote: true do |f| %>

Vamos testar o que acontece pelo navegador, tenha a certeza de estar rodando o servidor do Rails e acesse a pagina de
um job, como http:/localhost:3000/jobs/1 (http://localhost:3000/jobs/1). Preencha os campos do comentario e clique em
Send : aparentemente nada aconteceu, certo? Agora recarregue a pagina e olhe para o final da lista de comentarios: seu

novo comentdrio devera estar aparecendo la!

8oe J [hcbsoard » i

« (< Iocalhest: 3000 jobs /1

Job Board Premium Jobs AllJobs HelioWorld Mewcompany Login

Developer - Plataformatec

Good guy.

1 comment | Back

Send a new comment

Name

Body

Comments

AJAX! said:
OMG

Sent lass than a minute ago Dastroy

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571 1/10

http://localhost:3000/jobs/1

25/04/2020 Ruby on Rails 3 parte Il: Aula 5 - Atividade 2 Adicionando comentarios via AJAX | Alura - Cursos online de tecnologia

Se checarmos o log do servidor, veremos que foi recebida uma requisicdo POST em /jobs/1/comments , para criar o

novo comentario:

Started POST "/jobs/1/comments"” for 127.0.0.1 at 2013-02-19 10:37:35 -0300
Processing by CommentsController#create as JS
Parameters: {"utf8"=>"", "authenticity_token"=>"q9MdFOkB8fSefI9tkIA@dO100Zw+Z+byKao5MaYufqs="
Job Load (©.1ms) SELECT "jobs".* FROM "jobs" WHERE "jobs"."id" = ? LIMIT 1 [["id", "1"]]
(0.0ms) begin transaction
SQL (©.5ms) INSERT INTO "comments" ("body", "created_at", "job_id", "name", "updated_at") VA
Job Load (@.1ms) SELECT "jobs".* FROM "jobs" WHERE "jobs"."id" = 1 LIMIT 1
SQL (@.1ms) UPDATE "jobs" SET "comments count” = COALESCE("comments count”, @) + 1 WHERE "jo
(6.4ms) commit transaction
Redirected to http://localhost:3000/jobs/1
Completed 302 Found in 14ms (ActiveRecord: 7.2ms)

Perceba que a segunda linha do log, Processing by CommentsController#create as JS , identifica que o Rails reconheceu
essa requisicdo como IS, ou seja, através de uma requisicdo AJAX, e criou o comentario no banco de dados
normalmente. Maravilha! Ndo tivemos que escrever nenhum JavaScript para que nosso formulario seja

automaticamente enviado via AJAX. Mas fica a duvida: como isso funciona?

Rails, jQuery, e Unobtrusive JavaScript

O Rails ja possui algumas funcionalidades integradas com JavaScript para tornar nossa vida mais facil, e uma delas é o

envio de formularios através de requisicGes AJAX apenas utilizando a opgdo remote: true .

Para entendermos um pouco melhor como isso funciona por baixo dos panos, vamos utilizar o painel de desenvolvedor
do Google Chrome como no capitulo 2. Acesse a mesma pagina do job que acessamos antes, agora pelo Chrome, e abra
o painel (Ctrl + Shift + C para PC, ou Cmd + Option + C para Mac). Clique na aba Elements, que mostra o HTML completo
da pagina da forma como ele é visto pelo navegador, e entfo localize o botdo com uma lupa na parte inferior do painel:
este bot?o serve para inspecionar um elemento, ou seja, encontrar este elemento na pagina para que possamos verificar
seu HTML. Clique na lupa, e entdo mova o cursor do mouse para a pagina: conforme vocé for movendo o cursor sobre
os elementos, eles serdo selecionados, e vocé pode clicar para inspecionar o elemento. Localize o formulario de envio

de comentarios e clique nele, ele devera ser marcado no HTML sendo exibido na aba Elements, e deve ser algo como:

<form accept-charset="UTF-8" action="/jobs/1/comments"” class="form-horizontal" data-remote="tru

< >

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571 2/10

25/04/2020

& 5 O A [} localhost:3000/jobs /1

Ruby on Rails 3 parte Il: Aula 5 - Atividade 2 Adicionando comentarios via AJAX | Alura - Cursos online de tecnologia

Job Board

Developer - Plataformatec

Good guy.

1 eommant | Back

Send a new comment

[form#new_comment. farm-horizontal 1178px » 21ps|

All Jobs Hello Worid New company Login

€ | Bements | Resources Network Sources Timeline Profiles Audits

Tant
P <heads_</head>
¥ cbody»
®adiv classs"navbar navbar=tixed=top=s_/dive
Tuediv classe"container s
«hisDeveloper = Platatormatece/mls
wprGeod guy.=/ps
Bt f e
56nd 0 new comment</h2x

* Computed Style
 Styles

elesent.style {

]

Matched CS5 Rules,
median"all® 1
boststrap.css:1891
margin: e @ @ I0px;

® accept-charseta"UTF-B" actions"/ mments” closse"form-horizontal® data-resotes-trie” ide~new_comsent® sethods
<hd=Comments</hls form { user agent stylesheet
<hdaAJAKY saidiefhés Aisplay: black;
I - LTE TR - SRR formnew,_comment.form-horlzontal o

Note que existe um atributo chamado data-remote com o valor true . Este atributo é adicionado pelo Rails quando
passamos a opgdo remote: true para o formuldrio, e é através dessa indicac@o que o Rails sabe que deve manipular o

envio deste formulario por AJAX. Mas como essa manipulacio é feita?

O Rails utiliza por padrio a biblioteca jQuery (http://jquery.com/), muito utilizada em aplicacGes web, para manipulagio

de elementos na pagina através de JavaScript. Além disso, o Rails possui um JavaScript préprio, especialmente escrito

para se integrar com o jQuery, que adiciona funcionalidades como o envio de formularios com AJAX através da op¢do
remote . Esse JavaScript préprio do Rails é conhecido como o adaptador jQuery para Rails, ou simplesmente jquery-

rails (http://github.com/rails/jquery-rails), e existem outros adaptadores que se integram com bibliotecas diferentes.

Abra o Gemtfile e vocé verd uma linha que contém a gem jquery-rails , que traz o jQuery e o JavaScript do Rails para a
nossa aplicacdo. Vocé pode conferir essas duas bibliotecas sendo importadas no arquivo

app/assets/javascripts/application.js, que contém as linhas:

//= require jquery
//= require jquery_ujs

Esse arquivo adiciona o jquery e o jquery_ujs (o adaptador) a nossa aplicacio, e é referenciado no layout

app/views/layouts/application.html.erb, ao final da pagina:

<%= javascript_include_tag "application" %>

Isto inclui o application.js em todas as nossas paginas, e com isso, quando a pagina do job é exibida, o JavaScript do
Rails identifica que nosso formulario possui o atributo data-remote=true , e altera o envio dele para que seja feito
através de AJAX. Desta forma, o Rails ndo precisa encher o HTML com c6digo JavaScript para manipular o formulério,
pois o proprio JavaScript se encarregara de integrar a funcionalidade nos formuldrios que forem identificados com a
opcdo data-remote . Essa técnica é conhecida como Unobtrusive JavaScript, e permite que mantenhamos nossas

paginas mais limpas contendo somente HTML, e utilizemos JavaScript para adicionar funcionalidades que melhoram a

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571

3/10

http://jquery.com/
http://github.com/rails/jquery-rails

25/04/2020 Ruby on Rails 3 parte Il: Aula 5 - Atividade 2 Adicionando comentarios via AJAX | Alura - Cursos online de tecnologia

usabilidade para o usudrio final. Também ¢é devido ao titulo Unobtrusive JavaScript que o nome do arquivo JavaScript do

Rails é jquery_uyjs.

Otimo, agora que entendemos como o Rails modificou o envio do nosso formuldrio para usar AJAX, precisamos dar
feedback para o usuario de que o comentario foi enviado com sucesso ou se alguma validacéo falhou, caso contrario ele

pode pensar que a aplicagio estd com problemas e seu comentario néo esta sendo enviado.

Respondendo a requisi¢cdes AJAX no controller com respond_to

Antes de fazermos qualquer alteracéo, precisamos descobrir como o Rails estd respondendo a nossa requisicdo AJAX.
Abra a aba Network no painel do Chrome, que exibe todas as requisicdes que a pagina executa, e entdo envie um novo
comentdrio através do formulario. Vocé devera ver duas requisi¢oes acontecendo: a primeira é o envio do comentario
em si, uma requisicdo POST para /jobs/1/comments , que foi completada e redirecionou para a pagina do job, /jobs/1,

causando a segunda requisicao.

806 /" ubsoard x o
-~ 2 & | [localhost:3000/jobs /1
Job Board Premium Jobs Al Jobs New company Login
Developer - Plataformatec
Good guy.
1 comment | Back
Send a new comment
Name | Carlos
Body Mew AdAX Commant.
Conmmante
£) Eements Resgurces | Network | Sources Timeline Profidles Audits Console
Name Status Size Time
Path e Text Tree [N Content | Latency uE 18 27w ms asms sams 63m T2ms
comments 302 e auery s 8241 5118 2Ems
L jjobss1 so= Found o el B8 o o8 2Ems
1 200 it figcathest 3000 3EKR 43ms
L jjobs = oK el dinect 3.0KB a3m

2 requests | 4.7 KB transferred

B = 4 = @ & | oocuments Stylesheets Images Scripis XHR Fonis WebSockets Other &

Perfeito, a requisicdo AJAX estd acontecendo, porém temos essa segunda requisicdo que é necessaria quando enviamos
o comentario normalmente, mas se faz desnecessaria quando enviamos via AJAX. Isto quer dizer que o Rails esta
recebendo com sucesso a requisicdo AJAX como observamos no log, porém ele néo sabe responder a essa requisicéo de

maneira especifica, entdo ele responde da mesma forma que uma requisi¢do normal, causando o redirecionamento.

Vamos tratar isso adicionando um bloco respond_to a action responsavel por criar comentdrios, que permitird
definirmos uma resposta especifica para a requisicdo AJAX, dessa forma evitando esse redirecionamento
desnecessario. Vocé deve lembrar de ter visto o respond_to em outros controllers, pois ele é automaticamente gerado

pelo Rails através do scaffold. Por exemplo, abra o app/controllers/jobs_controller.rb e localize a action index:

def index
@jobs = Job.most_recent.includes(:company).all

respond_to do |format|
format.html # index.html.erb

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571

4/10

25/04/2020 Ruby on Rails 3 parte Il: Aula 5 - Atividade 2 Adicionando comentarios via AJAX | Alura - Cursos online de tecnologia

format.json { render json: @jobs }
end
end

O respond_to recebe um bloco com o argumento format , que neste caso responde para html (o padrdo quando ndo
ha respond_to), e também json . No caso de comentarios, vamos responder para html da mesma forma que
respondemos atualmente, e também para js de JavaScript, para manipularmos a resposta a requisicdo AJAX. Dessa
forma garantimos que o envio de comentarios funcionard como antes quando n#o for possivel utilizar JavaScript. Abra o

app/controllers/comments_controller.rb, e altere a action create conforme abaixo:

def create
@job = Job.find(params[:job_id])
@comment = @job.comments.build(params[:comment])

respond_to do |format]|
format.html do
if @comment.save

flash[:notice] = "Comment was created with success!”
else

flash[:alert] = "Please fill in all fields to create a comment."
end

redirect_to @job
end
format.js do
@comment.save
end
end
end

Mantemos a resposta html com o cédigo anterior que vai efetuar o redirect, e no caso da requisicido AJAX, apenas
salvamos o comentario. Porém, apenas salvar o comentario evitando o redirecionamento n#o é suficiente: precisamos
dar feedback para o usudrio se o comentario foi criado com sucesso ou néo. Para isso, vamos criar uma nova view em
app/views/comments, chamada create.js.erb, que serd automaticamente renderizada pela nossa action create quando

responder por js , com o seguinte conteudo para fins de teste:

alert('it works!");

Perceba que o nome da view contém .js aoinvésde .html , pois esse é o formato da requisicdo que estamos
respondendo. Note também que escrevemos JavaScript nesta view e ndo HTML, pois é o formato de resposta esperado
pela requisicido AJAX, e dessa forma conseguiremos escrever codigo JavaScript para manipular o contetido da pagina.
Vamos testar isto no navegador, atualize a pagina do job e tente enviar um comentdrio preenchendo todos os campos:

vocé deverd receber a mensagem alert , indicando que tudo funcionou com sucesso!

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571

5/10

25/04/2020

non

Ruby on Rails 3 parte Il: Aula 5 - Atividade 2 Adicionando comentarios via AJAX | Alura - Cursos online de tecnologia

Developer - Plataform~*~~

Good guy. The page at localhost-3000 says:

2 comments | Back @ it works

Send a new comment

Name Carios

ook

Body | Alert comment

o
POST ext/jpeas.. o

ript 188 S0ms

Perfeito! Basta agora escrevermos o JavaScript necessario para dar algum feedback ao usuario. Modifique o contetido da

view conforme abaixo:

<% if @comment.errors.empty? %>
$("#comments').append('<%=j render(@comment) %>');
$('#new_comment')[0].reset();
alert('Comment was created with success!');
<% else %>
alert('Please fill in all fields to create a comment.');
<% end %>

Canmmaente
D Dements Resowrces | Network | Scurces Timeline Profiles Audts Console
Name Status Size Time
Path packed Taxt Troe ! Comtent Latency | Timeline 2388 13an 4788 5918 7083 827y 545y
=T Jassets = NotModifiec T Parser 28 66ms [©
Jawery_ujs s Toody=1 = 304 . 173 2578 76ms
avsens Not Modifiec PRI g, 15.1K8 soms |<
hellojsThody=1 304 L 2978 Toms
2 o Not Moditiee ORI s 28 im |®
comments 200 ey s B24l G748 SO0ms

JobBoard x W) 2
& 2 C & [localhost:3000/jobs /1 =
Job Board Premium Jobs AllJobs HeBloWorkd Newcompany Login

O cédigo é simples: primeiro checamos se o comentario possui algum erro, e caso ndo, renderizamos o comentario com

render(@comment) , que vai renderizar a partial app/views/comments/_.comment.html.erb, e adicionamos esse contetdo

HTML a lista de comentarios que ja existird na pagina. Precisamos utilizar o helper j , que é um simples atalho para

escape_javascript , e que tem como objetivo escapar o conteido HTML, como aspas por exemplo, para que possa ser

inserido corretamente no meio do comando JavaScript. Depois resetamos o contetido do formuldrio para limpar os

campos, e mostramos uma mensagem para o usuario informando que o comentario foi criado com sucesso. Caso o

comentdrio ndo tenha sido salvo, mostramos uma mensagem pedindo que todos os campos sejam preenchidos.

Agora s6 precisamos adicionar o div com oid #comments & pagina, pois ele ainda no existe, para que o0 nosso

comentdrio seja inserido no lugar correto pelo JavaScript. Abra app/views/jobs/show.html.erb e altere a secdo de

comentarios como abaixo:

<h2>Comments</h2>
<div id="comments">

<%= render @job.comments %>
</div>

Pronto! Vamos testar se tudo esta funcionando no navegador. Atualize a pagina do job e mantenha a aba Network aberta

no painel de desenvolvedor. Agora tente enviar um novo comentario preenchendo todos os campos: vocé deve receber

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571

6/10

25/04/2020 Ruby on Rails 3 parte Il: Aula 5 - Atividade 2 Adicionando comentarios via AJAX | Alura - Cursos online de tecnologia

uma mensagem de sucesso, e o comentario deve aparecer na listagem logo abaixo, indicando que tudo ocorreu bem.

s X s Ry Tys— *) &
€ 2 C fi [localhost:3000/jobs /1 w7 =
Job Board Promium Jobs AllJobs HelloWorld Newcompany Login

Developer - Plataform~*~~

- The page at localhost-3000 says:
3 comments | Back Comment was crested with succeis!
Send a new comment —
Name
Body
=3
Cammente
© Bements Resources | Network | Sources Timelime Profiles Audits Console
Name Method| | Satm | T aderac Size Time |
Puch L | Taxt .h | = |Content | Latemcy | B a7y, 5588, Ta4y, 9305, 1Li6s, 100y, 1489
=T fassers il NotModifiec T Parser ze 66ms |

Jauery_ujsjsThody=1 108 178 2578 Tams
2 jassens o O 15.1K8 &oms

| hellojuThody=1 304 pid 2578 TTms
2 jasens il Not Modifiee PPV g us em |<

comments 200 laweryis 8241 a518 3ims

= jpebasi POST o R | o ripe 2948 3ims

11 requasts | 6.9 KB transferred | 14.89 5 (onload: 149 ms, DOMContentioaded: 148 ms)
@,55 G 1= @ @ CD|ocuments Siylesheets Images Scripts XHR Fonts WebSockets

E se vocé tentar enviar um comentario sem preencher algum campo, receberd uma mensagem de erro. Excelente!

000/ [jobsoard x | -
€ 2 C f§ [localhost:3000/jobs/1 wiE
Job Board Promium Jobs AllJobs HelloWord Newcompany Login

Developer - Plataform~*~~

- The page at localhost-3000 says:
3 comments | Back Pieare A8 in 20l Felds 1o create a comment,
Name
Boay
=
Cnmmanta
@ Dements Resources | Network | Scurces Timeline Profiles Audts Console
Name Mathog S0 | p e Size Time .
LT Lo | Twa i | — |Conmtant | Latamcy “J LT P T YT PO - X TTYRNE -1 YT X T T)
= fassens Not Modifiec Paruar 15.1K8 60m
hellojs Thody =1 304 LE 2578 TTms
= fassers & Not Modiec PPNAN0- (o 328 B3ms |~
| comments 200 Insery s 8341 9518 Iims
i sobara os oK e o 2940 3m
comments 200 lauere s A24l 7158 19ms
— fpbs1 = oK IR eripn 598 19ms -

12 requasts | 7.6 KB transferred | 36.06 5 (oaload: 149 ma, DOMCantentLoaded: 148 ms)
D55 & = & & O/ ocuments Sryleshests images Scripts XHR Fonts Weblockets Other F-

Verifique novamente o painel na aba Network, vocé perceberd que apenas uma requisicéo foi feita para cada tentativa

de enviar um comentario, ou seja, eliminamos o redirecionamento adicional que acontecia com sucesso!

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571 710

25/04/2020 Ruby on Rails 3 parte Il: Aula 5 - Atividade 2 Adicionando comentarios via AJAX | Alura - Cursos online de tecnologia

) Eements Resources | Network | Sources Timeline Profides Audits Console

Name Status. Size [Time I

Method Type Initiatar Timeline
LT i e | i | |Content | Latency) 900s 13Sks, 1B0Rs| 32S4s| 2784 1SSy 3606s)|
= jassets Not Modifiec T Parser 15.1K8 6oms | <

> | hellejs?hody=1
== jassers

304 L8 77ms |
Not Madifiec et Parser 6ims

GET

| comments 200 laserels 8241 Sims
[e o oK b e Iims
comments 200 iBueris A2l 19ms
L b1 post oK tert/linat... | oo 19ms
12 requests | 7.6 KB transfarred | 36.06 5 (onload: 149 ms, DOMContentioaded: 148 ms)
2,55 @ = @ & 0| vocuments Stylesheets Images Scripis XHR Fonis WebSockets Other

Ainda no painel, se vocé clicar sobre a primeira requisicéo para /jobs/I/comments, podera observar uma série
informagoes importantes, como por exemplo na aba Headers podemos ver o método que foi utilizado: POST e o status
da resposta: 200, que indica sucesso.

l@ Elements Resources | Network | Sources Timeline Profifes Audits Console

i L
Path | & Meaders | Preview Response Cookies Timing

=) Javiets

Reguest URL: http://localhost 3808/ jobs /1 comment s
1 hellojstbody =1 Request Method: POST ”
2 jassens Status Code: £1200 0K

: vRequest Headers view source

j comments Acoept: efeiqel.5, Text/javascript, spplication/javascript, apalicationfecsascript, npplication/x-ecmascript
Accept-Charset: 150-8859-1,utf-B;qed. 7, «;q=0.3

Accept-Incoding: gzip,deflate, sdeh

Accept-Language: en-US, en; qel. B

Connection: keep-alive

Content-Length: 157

® © D) | Documents Stylesheets images Scripts XHE Fonts WebSockets Other &

comments
—J Jjobs/1 H

E também na aba Response podemos ver o conteudo que o servidor retornou, nesse caso o cddigo JavaScript que

escrevemos e que foi executado no navegador ao receber essa resposta.

|o Eements Resources | Network | Sources Timeline Profiles Audits Conscle

Name o r

Path | Meaders Preview Response Cookies Timing

== fazsets 1| ${'#comment ppend | *<hdwCarios sald:<\/hi=\n<peNew ajax comment!<\/peinSent less than a minute agohnea hrefs\"/comments/6\" data-confirms\"Are you
et) [0]. resetd);

t was crested with successi')g

= 2| $itenew_e
| hellojsThody=1 3| alert(Co
= jassers 4
LI

comments H

—J sjobss1

Q = @ @)| Documents Stylesheets Images Soripts XHR Fonts WebSockets Other

=, =

Além disso, a aba Cookies exibe os cookies que sdo enviados pelo navegador e recebidos de volta do servidor, neste caso

apenas 0 _job_board_session , COmMO vimos no capitulo 2.

la Elements Resources | Metwork | Sources Timeline Profiles Audits Console l

Path | Meaders Preview Respomse | Cookles | Timing
=1 fassers

- Name alue Domain Fath Expres | Size HTTP Seure

o | heltodsibodyal w Request Cookies 241
=D b board_session BARTEOKIDINICINpE2 S WO OGIFRIATIRMDCAZWN INDMEZ TV, 241
- ¥ Response Cookies 259

ok board_session g2 n i Sessmn 259 v

— ljebs1

comments H

® &)| Documents Stylesheets Images Scripts XHR Fonts WebSockets Other

Podemos incrementar bastante o feedback para o usuario de acordo com a nossa imaginagdo, como por exemplo

removendo as mensagens alert e adicionando mensagens flash , mas isso ficard como um exercicio para vocé.

E isso encerra o nosso capitulo. Aprendemos como enviar formuldrios via AJAX, e como o Rails faz uso de Unobtrusive
JavaScript integrando-se a biblioteca jQuery para nos dar algumas funcionalidades sem muito esfor¢o. Também
descobrimos como manipular a resposta com base no tipo de requisi¢do que estamos recebendo utilizando

respond_to , e a retornar cddigo JavaScript em requisicdes AJAX, que serd executado no navegador, permitindo que
manipulemos a pagina melhorando o feedback para o usudrio. No capitulo seguinte notificaremos empresas por email

quando comentarios forem criados, ndo perca!

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571 8/10

25/04/2020 Ruby on Rails 3 parte Il: Aula 5 - Atividade 2 Adicionando comentarios via AJAX | Alura - Cursos online de tecnologia
Para saber mais

o Em nossa aplicacdo estamos exibindo a listagem de comentarios de um job na ordem em que eles estdo sendo
criados, contudo é bastante comum que comentdrios sejam exibidos na ordem inversa, ou seja, os comentarios
mais recentes aparecem no topo da lista. Vocé esta encarregado de fazer essa alteracéo, basta adicionar uma

clausula aos comentarios sendo exibidos, ordenando-os através do campo id de forma decrescente, como abaixo:

@job.comments.order('id desc')

Isso deve ser feito na view jobs/show.html.erb.

e Agora que os comentarios sdo corretamente exibidos em ordem inversa, temos que alterar o JavaScript que é
executado ao criar um novo comentario, pois ele esta sempre inserindo novos comentdrios ao final da lista,
lembra-se? Modifique-o para inserir os comentarios no comeco da lista, alterando a view comments/create.js.erb

para chamar prepend ao invés de append na listagem de comentarios. Pronto!

o Com os comentarios ordenados, descobrimos que é importante procurarmos nao deixar consultas ao Active Record
como essa dentro de views, pois isso pode facilmente deixar nossas views baguncadas e mais dificeis de serem
compreendidas. A maneira correta é movermos essas consultas para os controllers, que sdo 0s responsaveis por
esse tipo de trabalho, e utilizar variaveis de instancia para enviar as informacdes necessarias para as views. Entdo
faca isso: mova o codigo que busca os comentarios da view jobs/show.html.erb para a variavel @comments no

controller jobs, action show, dessa forma:

def show
@job = Job.find(params[:id])
@comments = @job.comments.order('id desc')

respond_to do |format|
format.html # show.html.erb
format.json { render json: @job }
end
end

E utilize agora essa variavel na view. Pronto! O c6digo estd refatorado e agora a view estd mais limpa e simples de se

entender.

o Na partial jobs/_job.html.erb, vocé podera ver que o link Destroy possui uma op¢ao data: { confirm: 'Are you
sure?' } . Essa opc¢do funciona de forma similar ao remote: true , o JavaScript do Rails identifica links com o

atributo data-confirm e os manipula para mostrar a mensagem de confirmagao.

e O helper link_to também possuia opcdo remote: true , que funciona de forma similar ao form_for , alterando o
clique do link para enviar uma requisicdo AJAX. Cheque a documentac¢io do método
(http://api.rubyonrails.org/classes/ActionView/Helpers/UrlHelper.html#method-i-link_to) para mais informacoes.

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571 9/10

http://api.rubyonrails.org/classes/ActionView/Helpers/UrlHelper.html#method-i-link_to

25/04/2020 Ruby on Rails 3 parte Il: Aula 5 - Atividade 2 Adicionando comentarios via AJAX | Alura - Cursos online de tecnologia

o Veja a documentacéo do método respond_to
(http://api.rubyonrails.org/classes/ActionController/MimeResponds.html#method-i-respond_to) para mais

exemplos de uso.

https://cursos.alura.com.br/course/ruby-on-rails2/task/1571 10/10

http://api.rubyonrails.org/classes/ActionController/MimeResponds.html#method-i-respond_to

