
02/12/2019 ASP.NET Core parte 1: Aula 3 - Atividade 5 Relacionamentos e Migrações | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/webapp-com-aspnet-core-2/task/37847 1/4

 05
Relacionamentos e Migrações

Transcrição

De um lado, temos as classes do modelo em C# e, do outro, o banco de dados vazio. Portanto, precisamos fazer a geração das

tabelas a partir do modelo, e para isso utilizamos o Entity Framework Core. Acessaremos os seus comandos, clicando na

opção "Tools", na barra de menu superior. Na sequência, selecionaremos "NuGet Package Manager > Package Manager

Console".

No console, podemos digitar os comandos que permitirão gerar tabelas. Criaremos um pacote de atualizações do esquema

do banco de dados e, em seguida, o aplicaremos. Ele é chamado de migração, ou migration. Ele contém informações de

quais tabelas geraram quais chaves, ou colunas, a partir do código. Para isso, utilizaremos o comando Add-Migration  e, em

seguida, teremos que inserir o nome da migração. Daremos o nome Inicial .

PM> Add-Migration Inicial

Pressionaremos a tecla "Enter" para rodarmos a aplicação, e ele gerará o pacote de migração. Ao �nalizar, abriremos o

projeto, e na pasta "Migrations" observamos que há uma classe contendo a data, seguida do nome Inicial.cs , nela temos

todo o esquema que foi gerado a partir da entidade Produto , são instruções para a criação da tabela de produtos.

Retornaremos ao console. Uma vez que geramos a migração, precisamos fazer a aplicação dela. Para isso, utilizamos o

comando Update-Database , seguido de -verbose , que indica ao Entity que ele deve gerar uma série de logs, para podermos

visualizar o que está acontecendo. Pressionaremos a tecla "Enter" para executarmos.

Os logs foram gerados, assim como a respectiva tabela no banco de dados, como podemos observar em "SQL Server Object

Explorer > CasaDoCodigo > Tables > dbo.Produto". Clicaremos com o botão direito do mouse sobre ela, e selecionaremos a

opção "View Designer".

Podemos visualizar que foi gerada uma tabela contendo uma chave primária id , que é uma das propriedades da nossa

classe e, em seguida, mais três linhas, com código, nome e preço do produto. Assim, concluímos a criação da nossa primeira

migração.

Retornaremos ao ApplicationContext  para fazermos o mapeamento do restante das entidades. Assim como �zemos

anteriormente, utilizaremos o modelBuilder :

namespace CasaDoCodigo
{ 
    public class ApplicationContext : DbContext 
    { 
        public ApplicationContext(DbContextOptions options) : base(options) 
        { 
        } 
 
        protected override void OnModelCreating(ModelBuilder modelBuilder) 
        { 
            base.OnModelCreating(modelBuilder); 
 
            modelBuilder.Entity<Produto>().HasKey(t => t.Id); 
 

modelB ilder Entit <Pedido>() HasKe (t > t Id);



02/12/2019 ASP.NET Core parte 1: Aula 3 - Atividade 5 Relacionamentos e Migrações | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/webapp-com-aspnet-core-2/task/37847 2/4

                        modelBuilder.Entity<Pedido>().HasKey(t => t.Id); 
 
                        modelBuilder.Entity<ItemPedido>().HasKey(t => t.Id); 
 
                        modelBuilder.Entity<Cadastro>().HasKey(t => t.Id); 
        } 
    }
}

Agora que relacionamos, �zemos o mapeamento de todas as entidades, precisamos descrever como serão os

relacionamentos. Utilizaremos os comandos para criar estas conexões, como o HasMany() , acompanhado da expressão

lambda t.Itens , indicando que queremos trabalhar com muitos itens. Por �m, vamos inserir o novo método WithOne() ,

que indica o relacionamento de volta, ou seja, cada item de pedido se relaciona a um pedido individual:

A seguir, faremos o relacionamento entre o pedido e o cadastro. A diferença é que esta relação se dá de um para um, ou seja,

cada pedido está relacionado a um cadastro e vice-versa. Acrescentaremos ainda um método indicando que o atributo é

obrigatório, que é o IsRequired() .

namespace CasaDoCodigo
{ 
    public class ApplicationContext : DbContext 
    { 
        public ApplicationContext(DbContextOptions options) : base(options) 
        { 
        } 
 
        protected override void OnModelCreating(ModelBuilder modelBuilder) 
        { 
            base.OnModelCreating(modelBuilder); 
 
            modelBuilder.Entity<Produto>().HasKey(t => t.Id); 
 
                        modelBuilder.Entity<Pedido>().HasKey(t => t.Id); 
                        modelBuilder.Entity<Pedido>().HasKey(t => t.Id).HasMany(t => t.Itens).WithOn
 
                        modelBuilder.Entity<ItemPedido>().HasKey(t => t.Id); 
 
                        modelBuilder.Entity<Cadastro>().HasKey(t => t.Id); 
        } 
    }
}

namespace CasaDoCodigo
{ 
    public class ApplicationContext : DbContext 
    { 
        public ApplicationContext(DbContextOptions options) : base(options) 
        { 
        } 
 
        protected override void OnModelCreating(ModelBuilder modelBuilder) 
        { 
            base.OnModelCreating(modelBuilder); 



02/12/2019 ASP.NET Core parte 1: Aula 3 - Atividade 5 Relacionamentos e Migrações | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/webapp-com-aspnet-core-2/task/37847 3/4

Dando continuidade, faremos isso com o ItemPedido . Cada um estará relacionado a um Pedido  e a um Produto . Da mesma

forma, o Cadastro  está relacionado a um Pedido .

Com isso, concluímos o mapeamento e podemos criar uma nova migração. Retornaremos ao console e digitaremos o

comando Add-Migration Modelo . Pressionaremos a tecla "Enter" para executarmos. O novo pacote será criado. Aplicaremos a

nova migração com o comando Update-Database -verbose , pressionando a tecla "Enter" para executá-la.

Agora, ao abrir o SQL Object Explorer vemos as tabelas Cadastro, ItemPedido, Pedido e Produto.

 
            modelBuilder.Entity<Produto>().HasKey(t => t.Id); 
 
                        modelBuilder.Entity<Pedido>().HasKey(t => t.Id); 
                        modelBuilder.Entity<Pedido>().HasMany(t => t.Itens).WithOne(t => t.Pedido); 
                        modelBuilder.Entity<Pedido>().HasOne(t => t.Cadastro).WithOne(t => t.Pedido)
 
                        modelBuilder.Entity<ItemPedido>().HasKey(t => t.Id); 
 
                        modelBuilder.Entity<Cadastro>().HasKey(t => t.Id); 
        } 
    }
}

namespace CasaDoCodigo
{ 
    public class ApplicationContext : DbContext 
    { 
        public ApplicationContext(DbContextOptions options) : base(options) 
        { 
        } 
 
        protected override void OnModelCreating(ModelBuilder modelBuilder) 
        { 
            base.OnModelCreating(modelBuilder); 
 
            modelBuilder.Entity<Produto>().HasKey(t => t.Id); 
 
                        modelBuilder.Entity<Pedido>().HasKey(t => t.Id); 
                        modelBuilder.Entity<Pedido>().HasMany(t => t.Itens).WithOne(t => t.Pedido); 
                        modelBuilder.Entity<Pedido>().HasOne(t => t.Cadastro).WithOne(t => t.Pedido)
 
                        modelBuilder.Entity<ItemPedido>().HasKey(t => t.Id); 
                        modelBuilder.Entity<ItemPedido>().HasOne(t => t.Pedido); 
                        modelBuilder.Entity<ItemPedido>().HasOne(t => t.Produto); 
 
                        modelBuilder.Entity<Cadastro>().HasKey(t => t.Id); 
                        modelBuilder.Entity<Cadastro>().HasOne(t => t.Pedido); 
        } 
    }
}



02/12/2019 ASP.NET Core parte 1: Aula 3 - Atividade 5 Relacionamentos e Migrações | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/webapp-com-aspnet-core-2/task/37847 4/4


