02/12/2019 ASP.NET Core parte 1: Aula 3 - Atividade 5 Relacionamentos e Migragdes | Alura - Cursos online de tecnologia

[os
Relacionamentos e Migracoes

Transcricdo

De um lado, temos as classes do modelo em C# e, do outro, o banco de dados vazio. Portanto, precisamos fazer a geracéo das
tabelas a partir do modelo, e para isso utilizamos o Entity Framework Core. Acessaremos os seus comandos, clicando na
opcdo "Tools", na barra de menu superior. Na sequéncia, selecionaremos "NuGet Package Manager > Package Manager

Console".

No console, podemos digitar os comandos que permitirdo gerar tabelas. Criaremos um pacote de atualizacoes do esquema
do banco de dados e, em seguida, o aplicaremos. Ele é chamado de migragdo, ou migration. Ele contém informacdes de
quais tabelas geraram quais chaves, ou colunas, a partir do cddigo. Para isso, utilizaremos o comando Add-Migration e, em

seguida, teremos que inserir o nome da migracdo. Daremos o nome Inicial .

PM> Add-Migration Inicial

Pressionaremos a tecla "Enter" para rodarmos a aplicac@o, e ele gerara o pacote de migrac#o. Ao finalizar, abriremos o
projeto, e na pasta "Migrations" observamos que ha uma classe contendo a data, seguida do nome Inicial.cs , nela temos

todo o esquema que foi gerado a partir da entidade Produto , sdo instrucdes para a criagdo da tabela de produtos.

Retornaremos ao console. Uma vez que geramos a migracao, precisamos fazer a aplicacdo dela. Para isso, utilizamos o
comando Update-Database , seguido de -verbose , que indica ao Entity que ele deve gerar uma série de logs, para podermos

visualizar o que estd acontecendo. Pressionaremos a tecla "Enter" para executarmos.

Os logs foram gerados, assim como a respectiva tabela no banco de dados, como podemos observar em "SQL Server Object
Explorer > CasaDoCodigo > Tables > dbo.Produto". Clicaremos com o botdo direito do mouse sobre ela, e selecionaremos a

opcao "View Designer".

Podemos visualizar que foi gerada uma tabela contendo uma chave primaria id , que é uma das propriedades da nossa
classe e, em seguida, mais trés linhas, com cédigo, nome e prego do produto. Assim, concluimos a criacdo da nossa primeira

migracao.

Retornaremos ao ApplicationContext para fazermos o mapeamento do restante das entidades. Assim como fizemos

anteriormente, utilizaremos o modelBuilder :

namespace CasaDoCodigo

{
public class ApplicationContext : DbContext
{
public ApplicationContext(DbContextOptions options) : base(options)
{
}

protected override void OnModelCreating(ModelBuilder modelBuilder)

{
base.OnModelCreating(modelBuilder);

modelBuilder.Entity<Produto>().HasKey(t => t.Id);

[TN - . -~ e N . ’ FEEEREEN

https://cursos.alura.com.br/course/webapp-com-aspnet-core-2/task/37847 1/4

02/12/2019 ASP.NET Core parte 1: Aula 3 - Atividade 5 Relacionamentos e Migragdes | Alura - Cursos online de tecnologia
modelBullder.tNT1TYy<rFedlao>().Haskey(T => T.ld);

modelBuilder.Entity<ItemPedido>().HasKey(t => t.Id);

modelBuilder.Entity<Cadastro>().HasKey(t => t.Id);

Agora que relacionamos, fizemos o mapeamento de todas as entidades, precisamos descrever como serdo os
relacionamentos. Utilizaremos os comandos para criar estas conexdes, como o HasMany() , acompanhado da expressao
lambda t.Itens,indicando que queremos trabalhar com muitos itens. Por fim, vamos inserir o novo método Withone() ,

que indica o relacionamento de volta, ou seja, cada item de pedido se relaciona a um pedido individual:

namespace CasaDoCodigo

{
public class ApplicationContext : DbContext
{
public ApplicationContext(DbContextOptions options) : base(options)
{
}
protected override void OnModelCreating(ModelBuilder modelBuilder)
{
base.OnModelCreating(modelBuilder);
modelBuilder.Entity<Produto>().HasKey(t => t.Id);
modelBuilder.Entity<Pedido>().HasKey(t => t.Id);
modelBuilder.Entity<Pedido>().HasKey(t => t.Id).HasMany(t => t.Itens).WithOr
modelBuilder.Entity<ItemPedido>().HasKey(t => t.Id);
modelBuilder.Entity<Cadastro>().HasKey(t => t.Id);
}
}
}

A seguir, faremos o relacionamento entre o pedido e o cadastro. A diferenga é que esta relagdo se da de um para um, ou seja,
cada pedido esta relacionado a um cadastro e vice-versa. Acrescentaremos ainda um método indicando que o atributo é

obrigatdrio, que é 0 IsRequired() .

namespace CasaDoCodigo

{
public class ApplicationContext : DbContext
{
public ApplicationContext(DbContextOptions options) : base(options)
{
}

protected override void OnModelCreating(ModelBuilder modelBuilder)

{
base.OnModelCreating(modelBuilder);

https://cursos.alura.com.br/course/webapp-com-aspnet-core-2/task/37847 2/4

02/12/2019 ASP.NET Core parte 1: Aula 3 - Atividade 5 Relacionamentos e Migragdes | Alura - Cursos online de tecnologia

modelBuilder.Entity<Produto>().HasKey(t => t.Id);
modelBuilder.Entity<Pedido>().HasKey(t => t.Id);
modelBuilder.Entity<Pedido>().HasMany(t => t.Itens).WithOne(t => t.Pedido);
modelBuilder.Entity<Pedido>().HasOne(t => t.Cadastro).WithOne(t => t.Pedido]

modelBuilder.Entity<ItemPedido>().HasKey(t => t.Id);

modelBuilder.Entity<Cadastro>().HasKey(t => t.Id);

Dando continuidade, faremos isso com 0 ItemPedido . Cada um estara relacionado a um Pedido e aum Produto . Da mesma

forma, o Cadastro esta relacionado a um Pedido .

namespace CasaDoCodigo

{
public class ApplicationContext : DbContext
{
public ApplicationContext(DbContextOptions options) : base(options)
{
}
protected override void OnModelCreating(ModelBuilder modelBuilder)
{
base.OnModelCreating(modelBuilder);
modelBuilder.Entity<Produto>().HasKey(t => t.Id);
modelBuilder.Entity<Pedido>().HasKey(t => t.Id);
modelBuilder.Entity<Pedido>().HasMany(t => t.Itens).WithOne(t => t.Pedido);
modelBuilder.Entity<Pedido>().HasOne(t => t.Cadastro).WithOne(t => t.Pedido]
modelBuilder.Entity<ItemPedido>().HasKey(t => t.Id);
modelBuilder.Entity<ItemPedido>().HasOne(t => t.Pedido);
modelBuilder.Entity<ItemPedido>().HasOne(t => t.Produto);
modelBuilder.Entity<Cadastro>().HasKey(t => t.Id);
modelBuilder.Entity<Cadastro>().HasOne(t => t.Pedido);
}
}
}

Com isso, concluimos o mapeamento e podemos criar uma nova migracio. Retornaremos ao console e digitaremos o
comando Add-Migration Modelo . Pressionaremos a tecla "Enter" para executarmos. O novo pacote sera criado. Aplicaremos a

nova migragdo com o comando Update-Database -verbose , pressionando a tecla "Enter" para executa-la.

Agora, ao abrir o SQL Object Explorer vemos as tabelas Cadastro, ItemPedido, Pedido e Produto.

https://cursos.alura.com.br/course/webapp-com-aspnet-core-2/task/37847 3/4

02/12/2019 ASP.NET Core parte 1: Aula 3 - Atividade 5 Relacionamentos e Migragdes | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/webapp-com-aspnet-core-2/task/37847 4/4

