
Criando Agentes com Agno

Asimov Academy

Criando Agentes com Agno

Conteúdo

01. O que o Agno tem de especial? 5
Funcionalidades e diferenciais do Agno . 5
Exemplo prático . 6
Conclusão . 6

02. O que são agentes de IA? 7
O que define um agente de IA? . 7
O papel das ferramentas nos agentes . 9
Definição de agente de IA . 9
Conclusão . 9

03. Como um agente executa tarefas? 10
Limitação dos modelos de linguagem . 10
O papel do framework na execução . 10

Exemplo prático . 10
Conclusão . 11

04. Agno ou LangChain? 12
Comparando Agno e LangChain . 12

Pontos-chave: . 12
Qual escolher? . 13
Conclusão . 13

05. Configurando o Agno 14
Por que usar o Agno com o Yuvi? . 14

Instalação do Yuvi . 14
Criando o ambiente virtual . 14

Instalando o Agno . 15
Criando o primeiro script . 15
Conectando-se à Groq . 16

Etapas para usar: . 16
Carregando variáveis do .env . 16

Executando o código . 16
Entendendo a resposta . 17

Conclusão . 17

Asimov Academy 1

Criando Agentes com Agno

06. Criando nosso primeiro Agente 18
Por que usar a classe Agent . 18
Criando um agente pesquisador com Tavily . 18

Instalação da ferramenta Tavily . 18
Código do agente . 19

Criando um agente analista financeiro com Yahoo Finance 19
Código do agente . 19

Explorando outras possibilidades . 20

07. Criando nossas próprias tools 21
Introdução à Criação de Ferramentas . 21

Exemplo de Função: Conversão de Celsius para Fahrenheit 21
Por que NÃO Funciona Imediatamente? . 21

Adicionando a Documentação (Docstring) . 22
Automatizando o Processo com Ferramentas de Desenvolvimento 23

Exemplo de Uso no Agno . 23
Possíveis Erros e Melhorias . 23

Conclusão . 24

08. Usando ChatGPT via API 25
Conectando-se a um Modelo da OpenAI . 25

Entendendo a Precificação . 25
Alterando o Modelo no Agno . 26

Explicação Detalhada . 26

09. Agno Playground 28
Introdução ao Agno Playground . 28

Como Configurar o Agno Playground . 28
Instalando Dependências Necessárias . 29

Testando o Agno Playground . 29
Funcionalidades do Agno Playground . 29

Histórico de Sessões . 30
Visualização de Chamadas de Função . 30
Documentação e Customização . 30
Teste de Funções no Agente . 30

Histórico Detalhado e Sessões de Agentes . 31
Problemas Comuns . 31

Conclusão . 32

Asimov Academy 2

Criando Agentes com Agno

10. Memória e Storage no Agno 33
Introdução à Memória Temporária . 33

Parâmetros addHistoryToMessages e numHistoryRuns 33
Limitações da Memória Temporária . 34
Armazenamento Persistente com Storage . 34

Exemplo com SQLiteStorage . 34
Instalando Dependências . 34
Testando o Storage . 35

Outras Opções de Storage . 35
Conclusão . 35

11. Adicionando Conhecimento Externo ao Agente com RAG 36
Introdução à Classe Knowledge . 36
Exemplo Prático com PDF . 36

Estrutura do Projeto . 36
Criando a Base de Conhecimento . 37
O Papel do VectorDB e Embeddings . 37
Integrando ao Agente . 38
Testando o Agente . 38

Outras Fontes de Conhecimento . 39
Conclusão . 39

12. Trabalhando com Memória no Agno 41
Diferença entre Memória e Storage . 41
Estrutura Básica da Memória . 41
Exemplo Prático . 41

Entendendo o código . 42
Configurando a memória (modelo + banco) . 42
Construindo o agente . 42

Como Funciona na Prática . 43
Possibilidades . 43
Conclusão . 43

13. Sistemas Multiagentes (Teams) no Agno 44
Diferença entre Time e Agente Único . 44
Estrutura Básica de um Time . 44
Exemplo Prático . 44

Entendendo o código . 46
Como Funciona na Prática . 46

Asimov Academy 3

Criando Agentes com Agno

Variações de Modo de Trabalho . 46
Possibilidades . 47
Conclusão . 47

Asimov Academy 4

Criando Agentes com Agno

01. O que o Agno tem de especial?

O Agno é um framework dedicado à criação de agentes de inteligência artificial utilizando Python. Ele foi
desenvolvido para simplificar o trabalho de quem deseja construir agentes capazes de interagir, buscar
informações, executar tarefas automatizadas e integrar diferentes sistemas. Apesar de ainda não ser o
framework mais conhecido da área, o Agno vem conquistando cada vez mais espaço na comunidade
graças à sua proposta de oferecer um ambiente prático, integrado e com foco em produtividade.

Enquanto outros frameworks, como LangChain, LangGraph, RayAI e soluções no-code (como N8n,
Make e LangFlow), também propõem facilitar o desenvolvimento de agentes, muitos deles acabam
exigindo um grande volume de código ou demandam diversas configurações para alcançar resultados
mais complexos. O Agno se diferencia principalmente por entregar uma quantidade considerável de
ferramentas prontas, que podem ser utilizadas quase imediatamente, e por valorizar uma curva de
aprendizado rápida, sem abrir mão da performance.

Funcionalidades e diferenciais do Agno

Um dos principais diferenciais do Agno é a integração com uma grande variedade de provedores de
modelos de linguagem (LLMs), permitindo que o desenvolvedor escolha com facilidade qual modelo
utilizar em cada projeto ou até mesmo combine múltiplos modelos em um mesmo agente. Entre os
provedores suportados estão OpenAI, Ollama, Mistral, Gemini, DeepSeek e Grok.

Além disso, o Agno disponibiliza diversas ferramentas nativas para equipar os agentes, facilitando desde
a pesquisa na web até a automação de tarefas em redes sociais (como WhatsApp, Slack, Discord, e-mail
e Gmail). Também oferece suporte avançado para extração de informações em sites, manipulação de
bases de dados (SQL, Postgres, arquivos CSV) e execução de comandos ou scripts Python diretamente
a partir do agente, incluindo interação com arquivos locais e terminal.

Outra característica importante é a facilidade para criar e integrar ferramentas personalizadas, tor-
nando possível adaptar o agente a qualquer necessidade específica do projeto. Para quem precisa
registrar históricos de conversas, o Agno inclui um módulo de storage que permite salvar interações
em bancos de dados locais de maneira simples e eficiente.

A arquitetura do Agno também contempla recursos de memória, possibilitando que o agente “lembre”
pontos-chave de interações anteriores, e inclui suporte a módulos de reasoning (raciocínio), bases de
conhecimento e sistemas multiagentes – estes, chamados de “times” no próprio framework.

Asimov Academy 5

Criando Agentes com Agno

Exemplo prático

A proposta do Agno de simplificar a construção de agentes fica evidente no código. Com poucas linhas,
já é possível criar um agente funcional:

from agno.agent import Agent
from agno.tools.tavily import TavilyTools

agent = Agent(tools=[TavilyTools()],
show_tool_calls=True)

agent.print_response("Search tavily for 'language models'", markdown=True)

Conclusão

O Agno representa uma evolução significativa no desenvolvimento de agentes de inteligência arti-
ficial em Python. Sua proposta alia praticidade, variedade de integrações e foco em produtividade,
atendendo tanto iniciantes quanto desenvolvedores experientes. Com ferramentas prontas, suporte a
múltiplos provedores e módulos avançados como memória, reasoning e multiagentes, o framework
torna possível criar sistemas sofisticados com simplicidade e clareza no código.

A cada capítulo, iremos nos aprofundar no uso dos principais recursos do Agno, oferecendo exemplos
práticos e orientando a construção de agentes personalizados para diferentes contextos. Assim, o
estudante estará apto a aproveitar todo o potencial da plataforma e criar soluções de IA avançadas de
forma acessível e eficiente.

Asimov Academy 6

Criando Agentes com Agno

02. O que são agentes de IA?

Antes de iniciar a parte prática da construção de agentes com Agno, é fundamental garantir a com-
preensão dos conceitos que fundamentam a área. Este módulo aborda, de forma breve e teórica, a
definição e os elementos essenciais de um agente de IA, preparando o terreno para os próximos passos
práticos do curso.

O que define um agente de IA?

O termo “agente de IA” ou “AI Agent” tem ganhado destaque nos últimos anos. Embora seja frequen-
temente mencionado como parte do futuro da inteligência artificial, é importante entender o que
realmente caracteriza um agente.

Para ilustrar a diferença entre um modelo tradicional e um agente, considere o exemplo do uso do
ChatGPT para solicitar a redação de um e-mail:

Asimov Academy 7

Criando Agentes com Agno

Figura 1: Exemplo diálogo com o ChatGPT

O ChatGPT não conseguirá executar essa ação, pois está limitado apenas à geração de texto, sem
acesso a ferramentas externas.

A principal limitação dos modelos tradicionais está justamente na impossibilidade de executar tarefas
no mundo real, como enviar e-mails, controlar dispositivos ou acessar bancos de dados.

Asimov Academy 8

Criando Agentes com Agno

O papel das ferramentas nos agentes

A diferença fundamental de um agente de IA está na capacidade de interagir com o ambiente externo
através de ferramentas. Isso pode incluir:

• Acesso a bancos de dados
• Envio de e-mails
• Integração com automação residencial
• Manipulação de arquivos ou informações em tempo real

Por exemplo, um agente construído com Agno pode ser equipado com uma ferramenta que acessa um
banco de dados de roteiros de vídeo. Ao solicitar uma lista de criadores cadastrados, o agente chama
uma função específica (“List Creators”), executa a busca e retorna as informações, automatizando
uma tarefa real e personalizada.

Se o agente for configurado com ferramentas de automação residencial, pode executar comandos
físicos, como desligar a luz de um cômodo, mediante uma simples solicitação em linguagem natural.

A presença dessas ferramentas é o que transforma um modelo de linguagem tradicional em um agente
de IA.

Definição de agente de IA

De forma objetiva:

Um agente de IA é uma LLM (Large Language Model) equipada com ferramentas e rodando
dentro de um loop, capaz de executar ações no ambiente ao receber comandos em linguagem
natural.

Conclusão

A evolução dos agentes de IA amplia o papel dos modelos de linguagem, permitindo que eles não
apenas compreendam e gerem texto, mas também executem tarefas automatizadas no mundo real.
A integração de ferramentas transforma o agente em uma peça ativa no ecossistema digital, com
potencial para impactar desde automações simples até processos complexos. Entender essa diferença
é fundamental para aproveitar todo o poder das plataformas modernas de agentes, como o Agno.

Asimov Academy 9

Criando Agentes com Agno

03. Como um agente executa tarefas?

Após compreender o conceito de agentes de IA, surge uma questão essencial: como esses agentes
realmente executam tarefas? Afinal, um modelo de linguagem tradicional (LLM) é, por natureza,
apenas uma grande rede neural capaz de gerar texto, sem capacidade direta de interação com o
mundo externo.

Limitação dos modelos de linguagem

Quando um modelo como o Llama ou o GPT está rodando localmente ou em servidores, sua função
básica é receber entradas de texto e devolver saídas em texto. Esses modelos não possuem, por si só, a
capacidade de clicar em telas, executar comandos, controlar sistemas ou realizar ações no ambiente.

Portanto, toda execução de tarefa por um agente de IA depende de uma ponte entre o modelo de
linguagem e o ambiente externo.

O papel do framework na execução

A mudança fundamental surgiu quando frameworks e APIs, como o próprio Agno ou as APIs da OpenAI
(a partir de 2023, com o lançamento do recurso Function Calling), passaram a permitir que o modelo
de linguagem fosse informado sobre quais funções estavam disponíveis para ele executar.

No prompt enviado ao modelo, são listadas as funções e instruções de como solicitar sua execução. O
modelo, ao reconhecer que determinada tarefa não pode ser realizada apenas com texto, gera uma
mensagem estruturada (por exemplo, em formato JSON) indicando qual função deseja chamar e quais
argumentos devem ser utilizados.

O framework (no caso, o Agno) interpreta essa mensagem, executa a função requisitada localmente
(ou na nuvem), obtém o resultado e então retorna essa resposta ao modelo de linguagem, que pode
processar, formatar e apresentar ao usuário.

Exemplo prático

• O usuário solicita ao agente:
“Liste para mim todos os criadores de conteúdo do banco de dados.”

• O modelo de linguagem, ao receber o pedido, reconhece que não consegue realizar sozinho a
consulta. Em vez disso, ele gera uma mensagem estruturada solicitando ao framework (Agno) a
execução de uma função específica, como List Creators.

Asimov Academy 10

Criando Agentes com Agno

• O Agno executa a função, busca os dados no banco de dados e retorna a resposta ao modelo de
linguagem.

• O modelo de linguagem, agora com acesso ao resultado, pode processar e apresentar a informa-
ção ao usuário em formato de texto compreensível.

Esse processo evidencia que a execução real das tarefas parte sempre do framework ou aplicação que
“escuta” as intenções do modelo e executa, de fato, as funções necessárias.

Conclusão

O modelo de linguagem, por si só, não executa tarefas no mundo real. Sua função é reconhecer
intenções, interpretar comandos e gerar mensagens estruturadas para que o framework responsável
(como o Agno) realize as ações necessárias. A integração entre modelo, ferramentas e aplicação permite
que agentes de IA sejam capazes de realizar tarefas automatizadas, trazendo inteligência e autonomia
a diferentes tipos de sistemas.

Asimov Academy 11

Criando Agentes com Agno

04. Agno ou LangChain?

Ao estudar agentes de IA em Python, é comum se deparar com a dúvida: qual framework utilizar? Entre
as principais opções do mercado, Agno e LangChain se destacam por serem bastante completos e
populares, mas atendem a necessidades diferentes.

Comparando Agno e LangChain

O LangChain é hoje a biblioteca mais conhecida para construção de aplicações e agentes com LLMs.
Seu ponto forte está no nível de customização: praticamente todos os componentes e comportamentos
podem ser definidos pelo desenvolvedor, possibilitando a criação de fluxos altamente personalizados.
No entanto, essa flexibilidade traz também maior complexidade, exigindo mais conhecimento técnico
e tempo para configurar funcionalidades como memória, gestão de storage e colaboração entre
múltiplos agentes.

Por outro lado, o Agno foi desenvolvido com foco em produtividade e simplicidade. Muitas das princi-
pais funcionalidades para construção de agentes já vêm prontas, como gerenciamento de memória,
execução de funções, lógica de colaboração entre agentes e sistemas multiagentes. Isso permite
que o desenvolvedor comece rapidamente a construir seus projetos, gastando menos tempo com
configurações técnicas e mais tempo naquilo que realmente impacta o resultado final: a elaboração
dos prompts e o design das interações.

Pontos-chave:

• Agno

– Vantagem: Grande parte dos recursos já implementados, velocidade de desenvolvimento,
menor preocupação com detalhes técnicos.

– Limitação: Menor flexibilidade para customizações profundas (depende das escolhas feitas
pelos desenvolvedores do framework).

• LangChain

– Vantagem: Alto grau de personalização e controle sobre todos os aspectos do agente e do
fluxo de execução.

– Limitação: Exige mais trabalho manual para configurar cada etapa do agente, aumentando
a curva de aprendizado e o tempo de desenvolvimento.

Asimov Academy 12

Criando Agentes com Agno

Qual escolher?

A escolha depende do seu objetivo:

• Se a prioridade é construir agentes rapidamente, com o menor atrito possível, o Agno é reco-
mendado. Ele permite focar naquilo que mais importa para a maioria dos casos: a qualidade do
prompt e o design da interação.

• Se houver necessidade de customização muito específica, ou o projeto exigir controle total sobre
cada detalhe da arquitetura, o LangChain pode ser a melhor escolha.

Conclusão

Não existe um framework “melhor” de forma absoluta: cada um atende a perfis e projetos diferentes.
Para a maior parte dos desenvolvedores e para quem está começando, o Agno proporciona ganhos
rápidos de produtividade e facilidade no desenvolvimento de agentes de IA. Já o LangChain é ideal
para quem busca máxima flexibilidade e está disposto a lidar com uma configuração mais detalhada.

Asimov Academy 13

Criando Agentes com Agno

05. Configurando o Agno

Chegou a hora de colocar a mão na massa. Neste capítulo, você vai aprender como configurar seu
ambiente local para começar a criar agentes com o Agno, usando o terminal e uma IDE Python. Va-
mos instalar o gerenciador de pacotes recomendado, criar o ambiente virtual e fazer nossa primeira
chamada a um modelo de linguagem.

Pré-requisitos: conhecimentos básicos de Python e uma IDE instalada (como VS Code, Cursor
ou PyCharm).

Por que usar o Agno com o Yuvi?

O Agno recomenda o uso do Yuvi (uv), um gerenciador de pacotes moderno para Python, por ser muito
mais rápido e eficiente que alternativas como pip ou poetry. O Yuvi facilita a criação de ambientes
isolados para cada projeto e agiliza a instalação de bibliotecas.

Instalação do Yuvi

No terminal da pasta do projeto, execute:

pip install uv

Após isso, inicialize o projeto com:

uv init

Esse comando cria os arquivos essenciais:

• .gitignore
• pyproject.toml
• README.md
• Versão do Python utilizada

Criando o ambiente virtual

Crie o ambiente virtual com:

Asimov Academy 14

Criando Agentes com Agno

uv venv

Ele será criado em uma pasta própria (.venv) e manterá todas as dependências do projeto isoladas.

Instalando o Agno

Com o ambiente pronto, instale o framework Agno:

uv add agno

Criando o primeiro script

Vamos testar nossa primeira integração com um modelo de linguagem da Groq. A Groq é uma empresa
de tecnologia - uma startup para ser mais preciso, especializada no desenvolvimento de hardware
e software otimizados para inteligência artificial (IA) e machine learning (ML). A principal pro-
posta da Groq é oferecer aceleração extrema no processamento de modelos de IA, com foco em
baixa latência, altíssimo throughput e previsibilidade de desempenho. Vamos usá-la em primeira
instância devido a gratuidade.

Crie um arquivo chamado 0_llm_call.py e insira o seguinte código:

from agno.models.groq import Groq
from agno.models.message import Message

model = Groq(id="llama-3.3-70b-versatile")

message = Message(
role="user",
content=[{"type": "text", "text": "Olá, meu nome é Rodrigo"}]

)

response = model.invoke([message])
print(response.choices[0].message.content)

Para executar esse script também será necessário ter instalado em sua máquina a biblioteca Groq que
pode ser instalada com o seguinte comando:

uv add groq

Asimov Academy 15

Criando Agentes com Agno

Conectando-se à Groq

A Groq é uma plataforma que hospeda modelos open-source (como Llama e DeepSeek) com desem-
penho altíssimo — e o melhor: com acesso gratuito.

Etapas para usar:

1. Acesse console.groq.com e crie uma conta.
2. Gere uma API key (ex: curso-asimov) e copie o valor.
3. Crie um arquivo .env na raiz do projeto com o seguinte conteúdo:

GROQ_API_KEY=sua_chave_aqui

Carregando variáveis do .env

Instale o pacote de suporte com:

uv add python-dotenv

E adicione ao seu script:

from dotenv import load_dotenv
load_dotenv()

Executando o código

Você pode rodar o script com:

python 0_llm_call.py

Ou usar o terminal interativo da sua IDE (como o Cursor) para ver os resultados diretamente. Se
aparecer um erro solicitando o ipykernel, basta instala-lo com o comandouv pip install
ipykernel.

Asimov Academy 16

Criando Agentes com Agno

Entendendo a resposta

O Agno retorna as respostas dos modelos com uma estrutura semelhante à da OpenAI. Se você seguiu
o passo a passo corretamente, receberá uma resposta parecida com essa:

Figura 2: Exemplo de saída do nosso primeiro algorítmo

Conclusão

Neste capítulo, você deu os primeiros passos essenciais para começar a trabalhar com inteligência
artificial utilizando o Agno. Primeiro, instalou o gerenciador de pacotes Yuvi e criou um ambiente
virtual para manter seu projeto organizado. Em seguida, instalou o Agno, configurou uma chave
de acesso da Groq e realizou sua primeira chamada a um modelo de linguagem (LLM). A partir
daqui, começaremos a utilizar a classe Agent, que torna o processo de criação de agentes ainda
mais simples e eficiente. Se você chegou até aqui, saiba que o mais difícil já passou — agora é hora de
explorar todo o potencial do Agno com mais fluidez e autonomia.

Asimov Academy 17

Criando Agentes com Agno

06. Criando nosso primeiro Agente

No capítulo anterior, aprendemos como chamar diretamente um modelo de linguagem com o Agno.
Apesar de funcionar, esse não é o fluxo recomendado para projetos reais. A partir de agora, vamos
trabalhar com a classe Agent, que encapsula toda a lógica necessária para interação com LLMs, uso
de ferramentas, execução de funções e construção de fluxos de conversação.

Por que usar a classe Agent

A classe Agent do Agno simplifica a criação de agentes inteligentes ao lidar com:

• Execução de funções automaticamente
• Integração com ferramentas externas (como web search)
• Padronização de chamadas a modelos de linguagem
• Definição de instruções, memórias e objetivos

Em resumo, ela permite que você foque no comportamento do agente e não na infraestrutura que o
sustenta.

Criando um agente pesquisador com Tavily

Vamos criar um agente simples chamado Researcher, que faz pesquisas na web em tempo real.

Instalação da ferramenta Tavily

Tavily é um serviço de pesquisa online que oferece uma API para buscar informações na internet. O
Agno já possui uma integração com ela via a ferramenta TavilyTools.

Crie uma conta gratuita em https://www.tavily.com, gere uma API Key e adicione ao seu arquivo
.env:

TAVILY_API_KEY=sua_chave_aqui

Instale o pacote Python:

uv add tavily-python

Asimov Academy 18

Criando Agentes com Agno

Código do agente

Crie um arquivo chamado 1_1_researcher.py com o seguinte código:

from agno.agent import Agent
from agno.tools.tavily import TavilyTools
from agno.models.groq import Groq

agent = Agent(
model=Groq(id="llama-3.3-70b-versatile"),
tools=[TavilyTools()],
debug_mode=True

)

agent.print_response("Use suas ferramentas para pesquisar a temperatura de hoje em Porto
Alegre")↪→

Execute com:

uv run 1_1_researcher.py

A resposta mostrará o processo do agente pensando, chamando a ferramenta Tavily e retornando a
resposta final.

Criando um agente analista financeiro com Yahoo Finance

Vamos agora criar um agente especializado em buscar informações do mercado financeiro.

Código do agente

Crie o arquivo 1_2_analista.py:

from agno.agent import Agent
from agno.models.groq import Groq
from agno.tools.yahoofinance import YahooFinanceTools
from dotenv import load_dotenv

load_dotenv()

agent = Agent(
model=Groq(id="llama-3.3-70b-versatile"),
tools=[YahooFinanceTools()],
instructions="Use tabelas para mostrar a informação final. Não inclua nenhum outro
texto.",↪→

Asimov Academy 19

Criando Agentes com Agno

debug_mode=True
)

agent.print_response("Qual a cotação atual da ação da Apple?", stream=True)

Instale o pacote necessário:

uv add yahoo-finance-python

Execute com:

uv run 1_2_analista.py

A resposta deverá incluir uma tabela com a cotação atual da Apple.

Explorando outras possibilidades

A classe Agent permite muitas outras configurações:

• instructions: define o comportamento esperado do agente
• tools: lista de ferramentas disponíveis
• debug_mode: exibe os bastidores da execução
• stream=True: ativa resposta contínua estilo ChatGPT

Nas próximas aulas, vamos explorar como dar memória ao agente, conectá-lo a múltiplas ferramentas
e torná-lo mais autônomo. ## Conclusão

Neste capítulo, você aprendeu:

• A criar agentes com a classe Agent
• A usar ferramentas como Tavily e Yahoo Finance
• A configurar instruções e stream de resposta
• A executar agentes via terminal com uv run

Com isso, começamos a estruturar agentes realmente funcionais e conectados com o mundo real. No
próximo capítulo, daremos novos poderes ao agente com memória e funções customizadas.

Asimov Academy 20

Criando Agentes com Agno

07. Criando nossas próprias tools

Após a criação do nosso primeiro agente e a implementação de ferramentas padrão do Agno, a próxima
dúvida é: como podemos criar nossas próprias ferramentas e oferecê-las ao modelo de linguagem?
Nesta aula, vamos aprender a criar essas ferramentas personalizadas.

Introdução à Criação de Ferramentas

O primeiro passo foi criar um novo arquivo chamado 13_onTools, onde vamos desenvolver nossas
ferramentas personalizadas. Vamos começar com uma ferramenta simples para converter Celsius
para Fahrenheit. Embora já tenhamos um modelo básico de agente que consulta a temperatura
em Porto Alegre, vamos adicionar uma funcionalidade que permita ao agente converter valores de
temperatura. Vamos usar o agente anterior como base para usarmos nossa nova ferramenta.

Exemplo de Função: Conversão de Celsius para Fahrenheit

Vamos criar a função de conversão de Celsius para Fahrenheit. A fórmula para a conversão é simples:

Temperatura em Fahrenheit =
(

Temperatura em Celsius × 9
5

)
+ 32

Agora, vamos implementá-la em Python:

def celsius_to_fh(temperatura_celsius: float):
return (temperatura_celsius * 9/5) + 32

Essa função simples recebe um valor em Celsius e retorna o valor convertido em Fahrenheit. Agora,
podemos passar essa função para o modelo de linguagem, mas ainda não está funcionando da maneira
que esperamos. Vamos entender por que.

Por que NÃO Funciona Imediatamente?

Mesmo com a função definida, ela não será reconhecida pelo modelo de linguagem imediatamente.
Isso ocorre porque o modelo precisa saber como usar a função. Quando instanciamos o agente pela
primeira vez, o Agno passa um prompt inicial que lista todas as ferramentas disponíveis, com uma
breve descrição de como elas funcionam.

Asimov Academy 21

Criando Agentes com Agno

No entanto, essa função de conversão ainda não está documentada, e o modelo não saberá usá-la
corretamente. O Agno, por outro lado, permite integrar a documentação diretamente no código, o que
facilita o processo de informar ao modelo como utilizá-la.

Adicionando a Documentação (Docstring)

A documentação de uma função no Python é feita através do docstring, um comentário estruturado
que descreve o que a função faz, seus parâmetros e o valor de retorno. No nosso caso, a documentação
ficaria assim:

def celsius_to_fh(temperatura_celsius: float):

"""
Converte temperatura de Celsius para Fahrenheit.

Args:
temperatura_celsius (float): Temperatura em graus Celsius

Returns:
float: Temperatura convertida para Fahrenheit

"""
return (temperatura_celsius * 9/5) + 32

Função de Conversão de Temperatura: Explicação Detalhada

1. def celsius_to_fahrenheit(temperatura_celsius: float) -> float:

• def indica que estamos definindo uma função.
• celsius_to_fahrenheit é o nome da função, que descreve sua ação.
• temperatura_celsius: float é o parâmetro de entrada da função, com anotação

de tipo indicando que esperamos um número decimal (float).
• -> float indica o tipo de retorno da função, ou seja, a função devolverá um valor

decimal.

2. Docstring (" ... ")

• Essa parte é a documentação da função.
• Explica o que a função faz, quais são os argumentos esperados e o que a função retorna.
• Essa documentação é importante porque o Agno consegue ler o docstring e informar o

modelo de linguagem sobre como utilizar a função.

3. return (temperatura_celsius * 9/5) + 32

• Essa linha realiza a conversão matemática.

Asimov Academy 22

Criando Agentes com Agno

• Primeiro multiplica a temperatura em Celsius por 9/5 (ou 1,8).
• Depois soma 32 para completar a conversão para Fahrenheit.
• return significa que o resultado desta operação será enviado como saída da função.

Automatizando o Processo com Ferramentas de Desenvolvimento

Se você estiver usando ferramentas como Cursor ou uma extensão no VS Code para programação
com agentes de IA, a geração da docstring pode ser feita automaticamente. No Cursor, por exemplo,
você pode usar o comando Ctrl-K para gerar a documentação diretamente com a frase “generate
docstring”.

Isso facilita bastante, pois o próprio modelo de linguagem pode gerar a documentação para você, sem
precisar escrever manualmente.

Exemplo de Uso no Agno

Agora que a função está documentada, podemos usá-la no agente. O modelo de linguagem, ao perceber
que a função foi definida, poderá utilizá-la em um cenário como o seguinte:

• O usuário solicita:
“Qual é a temperatura de hoje em Porto Alegre, em Fahrenheit?”

• O modelo de linguagem percebe que precisa primeiro fazer uma busca pela temperatura atual
(em Celsius) e depois realizar a conversão para Fahrenheit.

Exemplo de código para realizar a pesquisa e conversão temperatura_celsius
= agente.pesquisar_temperatura("Porto Alegre") temperatura_fahrenheit
= celsius_to_fahrenheit(temperatura_celsius)

O Agno, ao processar a consulta, executa a pesquisa, obtém a temperatura em Celsius e realiza a
conversão automaticamente, retornando a resposta ao usuário:

A temperatura de hoje em Porto Alegre é 22°C, o que equivale a 71.6°F.

Possíveis Erros e Melhorias

Se o modelo não retornar o valor esperado, pode ser necessário revisar o modelo utilizado. Modelos
pequenos, como o 70B, podem cometer erros de interpretação e chamadas de função. Para resultados
mais precisos, recomenda-se o uso de modelos maiores, como o GPT-4.1 ou Cloud 3.5.

Asimov Academy 23

Criando Agentes com Agno

Embora o modelo tenha retornado uma temperatura de 22°C, isso pode ter sido um erro de interpreta-
ção da resposta da pesquisa. O importante é que a função de conversão foi chamada corretamente e
o resultado final foi satisfatório, embora com alguns detalhes a serem ajustados.

Conclusão

Neste capítulo, aprendemos como criar funções personalizadas para nossos agentes, como documentá-
las corretamente para que o modelo de linguagem possa usá-las e como integrar essa funcionalidade
ao Agno. Além disso, vimos como a escolha do modelo de linguagem pode afetar a precisão dos
resultados. Nos próximos capítulos, continuaremos a aprender a trabalhar com modelos mais robustos
para melhorar ainda mais a eficiência do nosso agente.

Asimov Academy 24

Criando Agentes com Agno

08. Usando ChatGPT via API

Após aprender a trabalhar com modelos locais e outros provedores, vamos agora trocar o nosso
modelo para um da OpenAI — mais especificamente o GPT-4.1 Mini — e conhecer o Playground do
Agno, que oferece uma interface mais amigável que o terminal.

Conectando-se a um Modelo da OpenAI

O procedimento para se conectar a qualquer provedor de modelos é o mesmo: basta buscar pelo
nome do provedor (como GPT, Gemini, OpenAI) ou pela palavra API.

Neste exemplo, usaremos a OpenAI.

Os principais provedores, como OpenAI, Anthropic (Claude) e Google (Gemini), são pagos.

Entendendo a Precificação

Os modelos cobram por uso de duas formas:

1. Custo de entrada (input) — tokens que enviamos ao modelo.
2. Custo de saída (output) — tokens que o modelo gera como resposta.

O custo de saída costuma ser mais alto, pois gerar texto é mais custoso do que apenas processá-lo.

Exemplo (valores de agosto/2025):

• GPT-4.1 Mini
Entrada: US$ 0,40 por 1 milhão de tokens
Saída: US$ 1,60 por 1 milhão de tokens Para referência:

• 1 milhão de tokens = 600 mil palavras.
• Considerando uma média de 200 palavras/minuto, isso representa cerca de 3 mil minutos (50

horas) de fala.

Conclusão: Hoje, usar modelos via API é extremamente barato. Um depósito inicial de US$ 5 (cerca de
R$ 25–30) pode sustentar projetos por bastante tempo. ## Criando a Conta e Obtendo a API Key

1. Crie uma conta na OpenAI.
2. Vá em Settings → Billing e adicione saldo.
3. Gere sua API Key.
4. No projeto, adicione a chave ao arquivo .env:

Asimov Academy 25

https://platform.openai.com/

Criando Agentes com Agno

OPENAI_API_KEY="sua_chave_aqui"

Alterando o Modelo no Agno

Com a chave configurada, podemos substituir o modelo anterior (ex.: Grok) por um da OpenAI.

from agno.models.openai import OpenAIChat
from agno.agent import Agent

agent = Agent(
model=OpenAIChat(id="gpt-4.1-mini"),
demais configurações...

)

Se ainda não tiver a biblioteca instalada:

uv add openai

Explicação Detalhada

1. Importações

• from agno.models.openai import OpenAIChat: importa a classe responsável
por integrar com modelos da OpenAI.

• from agno.agent import Agent: importa a classe base para criar agentes no Agno.

2. Instanciando o agente

• model=OpenAIChat(id="gpt-4.1-mini"): define qual modelo será utilizado.
• id="gpt-4.1-mini": especifica a versão do modelo desejada.

3. Execução

• Ao rodar o agente, todas as interações serão enviadas para o GPT-4.1 Mini. ## Testando no
Projeto

Podemos reaproveitar o projeto anterior e comparar os resultados:

• Grok: interpretou incorretamente a temperatura, retornando valores imprecisos.
• GPT-4.1 Mini: entendeu corretamente o texto e retornou a temperatura real (ex.: 18 °C) sem

alucinações. ## Usando o Playground do Agno

Asimov Academy 26

Criando Agentes com Agno

Embora o terminal seja funcional, ele não é tão visual como você pode ver no exemplo a seguir:

Figura 3: Exemplo no Terminal

O Playground do Agno oferece:

• Interface web para execução e depuração de agentes.
• Visualização passo a passo das chamadas e respostas.
• Histórico organizado para referência.

Isso torna o desenvolvimento mais prático e rápido. ## Conclusão

Neste capítulo, aprendemos a:

• Entender a cobrança por tokens.
• Criar conta na OpenAI e gerar a API Key.
• Alterar o código para usar o GPT-4.1 Mini no Agno.
• Comparar resultados entre diferentes modelos.

Com isso, você está pronto para integrar modelos avançados ao seu agente e aproveitar ao máximo os
recursos da OpenAI dentro do Agno. No próximo capítulo exploraremos o Playground.

Asimov Academy 27

Criando Agentes com Agno

09. Agno Playground

Agora vamos aprender sobre o Agno Playground, uma ferramenta muito mais eficiente e visual para o
desenvolvimento de agentes. Com o Playground, podemos depurar e testar nossos agentes de uma
forma mais fluida e organizada, comparado ao terminal, que é limitado para visualização e interação.

Introdução ao Agno Playground

O Agno Playground é uma interface que permite desenvolver, testar e depurar agentes de maneira
muito mais intuitiva. Ao invés de debugar no terminal, onde é difícil acompanhar o fluxo e o histórico, o
Playground oferece visualização clara das sessões e memória dos agentes, facilitando todo o processo
de desenvolvimento.

Como Configurar o Agno Playground

Para usar o Agno Playground, o processo é simples. Vamos começar.

1. Comentar o código antigo: No início, comentamos a linha de código que estava executando o
agente diretamente pelo terminal.

2. Importações adicionais: Precisamos importar as classesplaygroundeservePlaygroundApp
do Agno.

from agno.playground import Playground, serve_playground_app

3. Criando o Playground: Vamos criar o playground passando a lista de agentes que queremos
testar:

app = Playground(agents=[
agent

]).get_app()

4. Configurando o método de execução: Usamos o método serve_playground_app, que
exige o nome do arquivo Python onde estamos executando o agente, garantindo que o Play-
ground esteja ativo.

if __name__ == '__main__':
serve_playground_app('13_onTools:app', reload=True)

Asimov Academy 28

Criando Agentes com Agno

Instalando Dependências Necessárias

Caso o Agno Playground peça bibliotecas adicionais, instale-as utilizando os seguintes comandos:

uv add fastapi
uv add uvcore

Após essas instalações, basta executar o código e iniciar o servidor do Playground.

Testando o Agno Playground

Agora que o Playground está configurado, podemos testar nosso agente de forma mais interativa.

1. Abra o terminal e execute o script.
2. Após iniciar o Playground com app.run(), o servidor local do Agno estará ativo. Para acessá-

lo, abra o navegador de sua preferência, digite o endereço do localhost e não se esqueça de
adicionar /v1 ao final do endereço.

Figura 4: Exemplo do Playground

Dica: Se houver outros agentes rodando na mesma porta, altere a porta ou feche as instâncias
anteriores para evitar conflito.

Funcionalidades do Agno Playground

No Agno Playground, temos várias funcionalidades úteis para testar e depurar agentes:

Asimov Academy 29

Criando Agentes com Agno

Histórico de Sessões

O Playground registra todas as sessões realizadas, mostrando o histórico completo das interações.
Isso facilita a depuração, pois você pode ver exatamente o que aconteceu em cada sessão.

Visualização de Chamadas de Função

Cada vez que o agente utiliza uma função, o Playground exibe como a função foi chamada, com
parâmetros e resultados. Isso permite que você acompanhe o fluxo de execução do agente de forma
clara.

Documentação e Customização

No Agno Playground, também podemos personalizar o nome dos agentes, o que facilita a organização
e documentação do que cada agente faz. No exemplo abaixo, renomeamos o agente para agente do
tempo, que lida com informações de temperatura.

agent = Agent(
name="Agente do tempo", #nova linha adicionando um nome ao agente
model=OpenAIChat(id="gpt-4.1-mini"),
tools=[

TavilyTools(),
celsius_to_fh,
]

)

Teste de Funções no Agente

O Agno Playground permite que você interaja diretamente com o agente no navegador. Por exemplo,
se pedirmos para o agente pesquisar a temperatura atual em Pernambuco e para converter de Celsius
para Fahrenheit, ele irá utilizar o Tavily e a função de conversão que já definimos para fornecer a
resposta correta.

Asimov Academy 30

Criando Agentes com Agno

Figura 5: Exemplo de uso das ferramentas

Como pudemos ver, além de exibir a saída, o Playground também nos permite visualizar quais fer-
ramentas o agente utilizou. Nesse caso, ele utilizou as duas ferramentas às quais nós concedemos
acesso.

Histórico Detalhado e Sessões de Agentes

Uma das grandes vantagens do Agno Playground é o acesso ao histórico detalhado das interações.
Você pode visualizar os detalhes de cada sessão, incluindo o tempo gasto, tokens usados e chamadas
de função realizadas.

• Tokens Gasto: O Playground mostra o número de tokens utilizados em cada sessão, permitindo
estimar os custos de execução.

• Tempo de Execução: O tempo que o agente leva para processar as funções também é registrado.

Problemas Comuns

Ao utilizar o Agno Playground, é possível se deparar com alguns problemas frequentes. Abaixo
listamos os mais comuns e suas soluções:

Asimov Academy 31

Criando Agentes com Agno

1. Navegadores com políticas restritivas

• Navegadores como Brave e Safari podem bloquear algumas funcionalidades do Play-
ground devido às políticas de privacidade e proteção de dados.

• Solução: Recomenda-se usar o Chrome, Edge, Firefox, dentre outros.

2. **Uso do endpoint v1 no localhost

• É importante adicionar /v1 ao final do endereço do localhost ao acessar o Playground.
• Isso garante que o navegador acesse o endpoint correto do servidor, evitando problemas

de roteamento ou falta de resposta.

3. • Problemas com sessões não salvas
• Em algumas máquinas, o Agno pode apresentar comportamento inesperado, não salvando

corretamente as sessões dos agentes.
• Situação já foi reportada à equipe do Agno.
• Solução provisória: utilizar a versão 1.5.0 do Agno Playground, que não apresenta este

problema.

Conclusão

Neste capítulo, aprendemos como configurar e utilizar o Agno Playground para desenvolver e depurar
agentes de forma interativa e eficiente. As principais vantagens incluem:

• Visualização do histórico de sessões e chamadas de função;
• Capacidade de personalizar agentes e atualizar em tempo real;
• Acompanhamento detalhado de tokens gastos e tempo de execução.

Com essas ferramentas, o desenvolvimento de agentes no Agno se torna muito mais fluido e produtivo.
No próximo capítulo, exploraremos como trabalhar com memória e sessões em mais detalhes.

Asimov Academy 32

Criando Agentes com Agno

10. Memória e Storage no Agno

Agora vamos aprender como implementar memória nos nossos agentes para que eles sejam capazes
de manter o contexto de conversas anteriores, e como utilizar o módulo Storage do Agno para salvar
permanentemente o histórico de sessões.

Introdução à Memória Temporária

O Agno Playground é o nosso ambiente padrão para desenvolver e testar agentes, oferecendo muito
mais recursos e clareza na visualização das interações do que o terminal. No entanto, por padrão,
o agente não mantém o histórico completo das conversas. Isso significa que, se enviarmos uma
mensagem informando nosso nome e em seguida enviarmos uma pergunta perguntando o nosso
nome, o agente inicialmente não saberá responder corretamente, pois apenas processa as mensagens
da interação atual.

Parâmetros addHistoryToMessages e numHistoryRuns

Para habilitar a memória temporária, podemos usar o parâmetro:

addHistoryToMessages=True

Esse parâmetro adiciona o histórico das últimas mensagens ao contexto enviado para o modelo. Ele
funciona junto com:

numHistoryRuns=3

O valor 3 indica que apenas as três últimas interações serão enviadas ao modelo. Podemos aumentar
esse número conforme a necessidade.

Exemplo de Uso

agent = Agent(
model=OpenAIChat(id="gpt-4.1-mini"),
tools=[...],
addHistoryToMessages=True,
numHistoryRuns=3

)

Com addHistoryToMessages=True, o agente passa a lembrar informações recentes. Aumentar
numHistoryRuns expande o contexto, mas também eleva o custo de tokens.

Asimov Academy 33

Criando Agentes com Agno

Dica: Usar um valor pequeno reduz custos, pois menos histórico é enviado a cada requisição.

Limitações da Memória Temporária

Essa memória é volátil. Se o servidor ou o Playground for reiniciado, o histórico se perde. O histórico
exibido no Playground é apenas visual e não é persistido pelo modelo.

Para manter as conversas de forma permanente, precisamos utilizar um Storage.

Armazenamento Persistente com Storage

O módulo Storage do Agno permite salvar conversas e dados do agente no computador ou em bancos
de dados externos, garantindo que o histórico não seja perdido entre sessões.

Exemplo com SQLiteStorage

O SQLite é um banco de dados leve, baseado em arquivo físico, ideal para testes e desenvolvimento.

from agno.storage.sqlite import SQLiteStorage

Instancia o storage SQLite
db = SQLiteStorage(

table_name="agent_sessions",
db_file="/temp/agent.db"

)

Passa o storage para o agente
agent = Agent(

model=OpenAIChat(id="gpt-4.1-mini"),
tools=[...],
storage=db

)

• table_name: nome da tabela onde as sessões serão armazenadas.
• db_file: caminho do arquivo físico que guardará o banco.

Atenção: Se o arquivo for excluído, o histórico será perdido.

Instalando Dependências

O SQLite no Agno utiliza SQLAlchemy como backend. Caso não esteja instalado:

Asimov Academy 34

Criando Agentes com Agno

uv add sqlalchemy

Testando o Storage

1. Inicie o agente com o storage configurado.
2. Inicie uma conversa: Olá, tudo bem com você?
3. Pare e reinicie o servidor.
4. Ao selecionar novamente o agente no Playground, a conversa anterior estará disponível.

Outras Opções de Storage

Além do SQLite, o Agno suporta:

• MongoDB – recomendado para produção.
• PostgreSQL – banco relacional robusto.
• Redis – armazenamento rápido em memória.
• YAML – formato de arquivo simples para persistência local.

Nos próximos projetos, exploraremos outras opções, principalmente para uso em produção.

Conclusão

Neste capítulo vimos como habilitar a memória temporária nos agentes, entendendo a função de
addHistoryToMessages e numHistoryRuns e seus impactos no custo e no contexto de execu-
ção. Exploramos também as limitações dessa abordagem e por que, em muitos casos, é necessário
configurar um Storage para preservar as interações. Conhecemos o uso prático do SQLite para esse fim
e refletimos sobre as diferenças entre adotá-lo em ambientes de desenvolvimento e migrar para solu-
ções mais robustas, como PostgreSQL ou MongoDB, quando o projeto evolui para produção. Essa base
permitirá que você desenvolva agentes mais inteligentes, capazes de manter e recuperar informações
de forma eficiente, garantindo uma experiência contínua para o usuário.

Asimov Academy 35

Criando Agentes com Agno

11. Adicionando Conhecimento Externo ao Agente com RAG

Agora que aprendemos a dar ferramentas para o agente, habilitar memória e salvar sessões em banco
de dados, vamos avançar para um ponto fundamental: permitir que o agente acesse conhecimento
externo. Isso é útil quando precisamos trabalhar com grandes volumes de informação, como docu-
mentos PDF extensos, repositórios de arquivos ou bases de dados corporativas.

Introdução à Classe Knowledge

O Agno fornece a classe Knowledge, que permite processar e incorporar diferentes fontes de infor-
mação ao modelo. Entre as possibilidades, podemos integrar:

• PDFs locais ou da internet;
• Objetos armazenados em S3 da aws;
• Sites e conteúdos da web (incluindo Wikipedia e YouTube);
• Arquivos JSON e DOCX;
• Papers do arXiv;
• Entre outros formatos.

Exemplo Prático com PDF

Para o exemplo, utilizaremos o relatório Global EV Outlook 2025 sobre o mercado de veículos elétricos.
Nosso objetivo é criar um agente capaz de responder perguntas baseadas nesse documento.

Estrutura do Projeto

1. Criar um arquivo pdfagent.py.
2. Importar as classes necessárias: python from agno.agent import Agent from

agno.playground import Playground, serve_playground_app from
agno.storage.sqlite import SQLiteStorage from agno.models.openai
import OpenAIChat from agno.knowledge.pdf import PDFKnowledgeBase,
PDFReader from agno.vectordb.chroma import ChromaDB

3. Instanciar o banco vetorial (VectorDB) com ChromaDB.
4. Criar a base de conhecimento PDFKnowledgeBase apontando para o PDF desejado.
5. Associar essa base de conhecimento ao agente.

Asimov Academy 36

Criando Agentes com Agno

O que cada um faz?

• Agent: define o agente (modelo + ferramentas + memória/knowledge).
• Playground / serve_playground_app: expõe o agente numa UI local.
• SQLiteStorage: salva o histórico de sessões em disco.
• OpenAIChat: modelo de linguagem usado pelo agente.
• PDFKnowledgeBase / PDFReader: cria a base de conhecimento a partir de PDF(s).
• ChromaDB: banco vetorial que armazena os embeddings do PDF.

Criando a Base de Conhecimento

Instanciando o banco vetorial
vectordb = ChromaDB(

collection="pdfAgent",
persist_directory="/temp/chroma_db"

)

Criando a base de conhecimento a partir do PDF
knowledge = PDFKnowledgeBase(

path="GlobalEVOutlook2025.pdf", # caminho do PDF (pode ser lista ou diretório)
vectordb=vectordb, # usa o Chroma definido acima
reader=PDFReader(chunk=True) # extrai texto e fatia em pedaços (chunks)

)

Chunking: o parâmetro chunk=True divide o documento em partes menores para processa-
mento mais eficiente.

Após criar a base, executamos knowledge.load() na primeira vez para processar e salvar os
dados no VectorDB.

O Papel do VectorDB e Embeddings

O VectorDB transforma textos em vetores matemáticos (via embeddings), permitindo buscar in-
formações por similaridade semântica e não apenas por correspondência exata de palavras. Isso
significa que, se perguntarmos sobre “veículos elétricos”, ele também encontrará trechos que mencio-
nem “carros elétricos”.

Essa abordagem é conhecida como RAG (Retrieval-Augmented Generation), onde buscamos apenas os
trechos relevantes e os passamos ao modelo como contexto para gerar a resposta.

Asimov Academy 37

Criando Agentes com Agno

Integrando ao Agente

agent = Agent(
name="Agente de PDF",
model=OpenAIChat(id="gpt-4.1-mini"),
storage=db,
knowledge=knowledge,
instructions="Você deve chamar o usuário de senhor",
description="",
add_history_to_messages=True,
search_knowledge=True,
num_history_runs=3,
debug_mode=True

)

No __main__, executamos:

if __name__ == '__main__':
knowledge.load() # Apenas na primeira execução
serve_playground_app('pdfagent:app', reload=True)

Na primeira execução, vai levar algum tempo, mas após a indexação inicial, o agente estará pronto
para responder perguntas sobre o documento.

Testando o Agente

Exemplo de interação:

Asimov Academy 38

Criando Agentes com Agno

Figura 6: Exemplo com RAG

O agente busca no VectorDB os trechos mais relevantes, insere-os no contexto e gera a resposta.

Outras Fontes de Conhecimento

Além de PDFs, o Agno oferece classes para diversas origens:

• arXivKnowledge – papers científicos;
• CSVKnowledge – arquivos .csv;
• DocxKnowledge – documentos .docx;
• JSONKnowledge – arquivos .json;
• WebsiteKnowledge – captura conteúdo de páginas web e links internos.

A lógica de uso é a mesma: instanciar a base, processar os dados e passá-la como knowledge ao
agente.

Conclusão

Neste capítulo, exploramos como ampliar o alcance do agente utilizando RAG para integrar conheci-
mento externo. Vimos como criar uma base de conhecimento a partir de PDFs, armazená-la em um

Asimov Academy 39

Criando Agentes com Agno

banco vetorial e habilitar buscas semânticas para fornecer respostas contextualizadas. Esse recurso
transforma o agente em um especialista sob demanda, capaz de responder com precisão sobre qual-
quer acervo de informações que disponibilizarmos, seja um relatório corporativo, uma base científica
ou até mesmo um conjunto de sites relevantes.

Asimov Academy 40

Criando Agentes com Agno

12. Trabalhando com Memória no Agno

Agora que já dominamos ferramentas, Knowledge/RAG e Storage, vamos explorar a Memória do Agno
— um mecanismo que registra, de forma resumida e persistente, informações relevantes sobre o
usuário e a conversa (ex.: nome, preferências, fatos importantes). Diferente do histórico (janela de
contexto) e do storage (log completo das sessões), a memória traz só o essencial para próximas
interações, reduzindo custo de tokens e aumentando personalização.

Diferença entre Memória e Storage

No Agno:

• Histórico de Mensagens: contexto imediato enviado ao modelo (controlado poraddHistoryToMessages
e numHistoryRuns).

• Storage: persistência completa das sessões e histórico em banco de dados.
• Memória: registro resumido e estruturado de informações relevantes sobre o usuário ou a

interação, gerenciado automaticamente por um “agente auxiliar”.

Estrutura Básica da Memória

A memória funciona como um assistente paralelo que:

1. Analisa as mensagens trocadas.
2. Extrai dados importantes (nome, preferências, informações pessoais relevantes ao contexto).
3. Salva esses dados em um banco local (SQLite ou outros).
4. Disponibiliza-os ao agente principal em todas as conversas.

Exemplo Prático

from agno.agent import Agent
from agno.tools.tavily import TavilyTools
from agno.models.openai import OpenAIChat
from agno.playground import Playground, serve_playground_app
from agno.memory.v2.memory import Memory
from agno.memory.v2.db.sqlite import SqliteMemoryDb

memory = Memory(
model=OpenAIChat(id="gpt-4.1-mini"),
db=SqliteMemoryDb(table_name="user_memories", db_file="tmp/agent.db"),

)

Asimov Academy 41

Criando Agentes com Agno

agent = Agent(
model=OpenAIChat(id="gpt-4.1-mini"),
tools=[TavilyTools()],
instructions="Você é um pesquisador. Responda sempre chamando o usuário de senhor.",
memory=memory,
enable_agentic_memory=True,
debug_mode=True

)

app = Playground(agents=[
agent

]).get_app()

if __name__ == "__main__":
serve_playground_app("31_memory:app", reload=True)

Entendendo o código

Configurando a memória (modelo + banco)

memory = Memory(
model=OpenAIChat(id="gpt-4.1-mini"),
db=SqliteMemoryDb(table_name="user_memories", db_file="tmp/agent.db"),

)

• model=OpenAIChat(...): a memória tem seu próprio LLM, usado para:

– detectar trechos “memoráveis” na conversa (ex.: “meu nome é X”),
– resumir/estruturar e gravar no banco (tópico, valor, etc.).

• db=SqliteMemoryDb(...): a memória é persistida em tmp/agent.db.

– table_name="user_memories": tabela onde os registros ficam.

Construindo o agente

agent = Agent(
model=OpenAIChat(id="gpt-4.1-mini"),
tools=[TavilyTools()],
instructions="Você é um pesquisador. Responda sempre chamando o usuário de senhor.",
memory=memory,
enable_agentic_memory=True,
debug_mode=True

)

Asimov Academy 42

Criando Agentes com Agno

• model: LLM primário do agente (responde ao usuário e decide usar tools).
• tools=[TavilyTools()]: dá capacidade de pesquisa ao agente.
• instructions: system prompt; define tom e conduta (“chame o usuário de ‘senhor’”).
• memory=memory: conecta o módulo de memórias criado acima.
• enable_agentic_memory=True: habilita o fluxo agente-com-memória:

– o agente pode disparar a função interna (ex.: updateUserMemory)
para registrar fatos importantes automaticamente.

• # debug_mode=True: opcional; loga detalhadamente as chamadas de tool/memória.

O restante do código diz respeito a importações e a execução do Playground que nós já conhecemos.

Como Funciona na Prática

1. O usuário diz: “Meu nome é Rodrigo”.
2. O agente registra na memória: Nome do usuário: Rodrigo.
3. Em qualquer conversa futura, mesmo sem histórico recente, o agente poderá responder: “Senhor

Rodrigo”.
4. É possível armazenar múltiplos tipos de informações: preferências, dados familiares, histórico

de atendimento.

Possibilidades

• Atendimento ao cliente com registro de histórico personalizado.
• Assistentes pessoais que lembram preferências e dados do usuário.
• Agentes que priorizam informações essenciais extraídas de longas conversas.

Conclusão

O recurso de Memória do Agno é uma ferramenta poderosa para criar agentes mais contextuais e
personalizados. Ao registrar informações resumidas e relevantes, evitamos depender apenas de janelas
de contexto extensas e reduzimos custos com tokens, mantendo a experiência do usuário fluida e
contínua. Essa abordagem abre caminho para soluções mais inteligentes em atendimento, suporte e
personalização de serviços.

Asimov Academy 43

Criando Agentes com Agno

13. Sistemas Multiagentes (Teams) no Agno

Agora que já dominamos ferramentas, RAG/Knowledge e Storage, vamos explorar os Times (Teams):
uma forma de combinar vários agentes especializados para resolver tarefas complexas. Ao invés
de um único agente com muitas ferramentas, dividimos responsabilidades em membros com papéis
claros e, opcionalmente, um líder que roteia, coordena ou sintetiza respostas.

Diferença entre Time e Agente Único

No Agno, você pode resolver problemas de duas formas:

• Agente Único: um LLM com um prompt claro e um conjunto de ferramentas. É simples, previsível
e suficiente quando o domínio é focado.

• Time (Team): vários agentes com instruções e ferramentas específicas, mais um líder que
organiza o fluxo.

Quando usar Time:

• Muitas capacidades heterogêneas (pesquisa web, cálculo, banco de dados, visão, etc.).
• Necessidade de paralelismo ou separação de responsabilidades (ex.: pesquisador vs. analista).
• Você quer tornar explícita a decisão de quem deve atuar em cada etapa.

Quando preferir Agente Único:

• Problema estreito, poucas ferramentas.
• Latência/custo e complexidade de coordenação não compensam.

Estrutura Básica de um Time

Um Team funciona como um orquestrador:

1. Líder (opcional, mas recomendado): decide quem faz o quê (roteia/coordena/sintetiza).
2. Membros: agentes especializados em partes do problema.
3. Modo de trabalho: route, coordinate ou collaborate.
4. Ferramentas por agente: cada membro vê apenas o que precisa.

Exemplo Prático

Vamos construir um time no modo Route para rotear por idioma. O líder detecta o idioma da pergunta
e encaminha ao membro correto (inglês, francês ou chinês). Caso o idioma não seja suportado, usamos
fallback para inglês.

Asimov Academy 44

Criando Agentes com Agno

from agno.agent import Agent
from agno.models.deepseek import DeepSeek
from agno.models.mistral.mistral import MistralChat
from agno.models.openai import OpenAIChat
from agno.team.team import Team

english_agent = Agent(
name="English Agent",
role="You only answer in English",
model=OpenAIChat(id="gpt-4o"),

)

french_agent = Agent(
name="French Agent",
role="You can only answer in French",
model=OpenAIChat(id="gpt-4o"),

)

multi_language_team = Team(
name="Multi Language Team",
mode="route",
model=OpenAIChat("gpt-4o"),
members=[english_agent, french_agent],
show_tool_calls=True,
markdown=True,
description="You are a language router that directs questions to the appropriate language
agent.",↪→

instructions=[
"Identify the language of the user's question and direct it to the appropriate

language agent.",↪→

"If the user asks in a language whose agent is not a team member, respond in English
with:",↪→

"'I can only answer in the following languages: English, French. Please ask your
question in one of these languages.'",↪→

"Always check the language of the user's input before routing to an agent.",

"For unsupported languages like Italian, respond in English with the above message.",

],
show_members_responses=True,

)

if __name__ == "__main__":
Ask "How are you?" in all supported languages
multi_language_team.print_response("Comment allez-vous?", stream=True) # French
multi_language_team.print_response("How are you?", stream=True) # English
multi_language_team.print_response("Come stai?", stream=True) # Italian

Asimov Academy 45

Criando Agentes com Agno

Entendendo o código

• Membros especializados (agent_en, agent_fr, agent_zh): cada um com instruções que
fixam o idioma de saída.

• Líder (router): recebe a pergunta, decide o destino e aplica fallback quando necessário.
• **Team(...)**: instancia o time, define mode="route" e permite exibir respostas dos

membros com show_member_responses=True durante testes.

Como Funciona na Prática

1. O usuário envia uma pergunta em um idioma suportado.
2. O líder detecta o idioma e encaminha ao membro correspondente.
3. O membro gera a resposta já no idioma correto.
4. Se o idioma não for suportado, o líder responde em inglês pedindo que o usuário use um idioma

suportado (comportamento de fallback que você pode personalizar).

Variações de Modo de Trabalho

Além de route, você pode adotar:

• **coordinate**** (Coordenação): o líder quebra a tarefa** em subtarefas, solicita respostas
aos membros e depois sintetiza um resultado único.

pesquisador = Agent(...)
analista = Agent(...)
coordenador = Agent(...)

team = Team(
model=OpenAIChat(id="gpt-4o-mini"),
members=[pesquisador, analista],
leader=coordenador,
mode="coordinate",

)
print(team.run("Qual o impacto de juros altos no valuation?"))

• **collaborate**** (Colaboração): todos os membros trabalham em paralelo** sobre a
mesma entrada (ex.: ideação, avaliação e planejamento) e o líder sintetiza.

ideacao = Agent(...)
avaliacao = Agent(...)
planejamento = Agent(...)
lider = Agent(...)

team = Team(

Asimov Academy 46

Criando Agentes com Agno

model=OpenAIChat(id="gpt-4o-mini"),
members=[ideacao, avaliacao, planejamento],
leader=lider,
mode="collaborate",

)
print(team.run("Como lançar um curso de data science em 90 dias?"))

Possibilidades

• Assistentes compostos: pesquisador (web) + analista (cálculo) + redator (síntese).
• Roteamento por competência: times por idioma, por domínio (jurídico, financeiro) ou por tipo

de entrada (texto, imagem, planilha).
• Pipelines de decisão: detecção → análise → verificação → relatório.
• Paralelismo criativo: geração de ideias em paralelo seguida de votação/síntese.

Conclusão

Times no Agno são úteis quando há especializações claras e a coordenação agrega valor real. Comece
simples (um agente único bem instruído) e evolua para Teams quando surgirem limitações de rotea-
mento, manutenção de prompts ou necessidade de paralelismo. Defina papéis com clareza, delimite
ferramentas por agente e use logs/observabilidade para depurar a colaboração.

Asimov Academy 47

	01. O que o Agno tem de especial?
	Funcionalidades e diferenciais do Agno
	Exemplo prático
	Conclusão

	02. O que são agentes de IA?
	O que define um agente de IA?
	O papel das ferramentas nos agentes
	Definição de agente de IA
	Conclusão

	03. Como um agente executa tarefas?
	Limitação dos modelos de linguagem
	O papel do framework na execução
	Exemplo prático

	Conclusão

	04. Agno ou LangChain?
	Comparando Agno e LangChain
	Pontos-chave:

	Qual escolher?
	Conclusão

	05. Configurando o Agno
	Por que usar o Agno com o Yuvi?
	Instalação do Yuvi
	Criando o ambiente virtual

	Instalando o Agno
	Criando o primeiro script
	Conectando-se à Groq
	Etapas para usar:
	Carregando variáveis do .env

	Executando o código
	Entendendo a resposta

	Conclusão

	06. Criando nosso primeiro Agente
	Por que usar a classe Agent
	Criando um agente pesquisador com Tavily
	Instalação da ferramenta Tavily
	Código do agente

	Criando um agente analista financeiro com Yahoo Finance
	Código do agente

	Explorando outras possibilidades

	07. Criando nossas próprias tools
	Introdução à Criação de Ferramentas
	Exemplo de Função: Conversão de Celsius para Fahrenheit

	Por que NÃO Funciona Imediatamente?
	Adicionando a Documentação (Docstring)
	Automatizando o Processo com Ferramentas de Desenvolvimento

	Exemplo de Uso no Agno
	Possíveis Erros e Melhorias

	Conclusão

	08. Usando ChatGPT via API
	Conectando-se a um Modelo da OpenAI
	Entendendo a Precificação

	Alterando o Modelo no Agno
	Explicação Detalhada

	09. Agno Playground
	Introdução ao Agno Playground
	Como Configurar o Agno Playground
	Instalando Dependências Necessárias

	Testando o Agno Playground
	Funcionalidades do Agno Playground
	Histórico de Sessões
	Visualização de Chamadas de Função
	Documentação e Customização
	Teste de Funções no Agente

	Histórico Detalhado e Sessões de Agentes
	Problemas Comuns

	Conclusão

	10. Memória e Storage no Agno
	Introdução à Memória Temporária
	Parâmetros addHistoryToMessages e numHistoryRuns

	Limitações da Memória Temporária
	Armazenamento Persistente com Storage
	Exemplo com SQLiteStorage
	Instalando Dependências
	Testando o Storage

	Outras Opções de Storage
	Conclusão

	11. Adicionando Conhecimento Externo ao Agente com RAG
	Introdução à Classe Knowledge
	Exemplo Prático com PDF
	Estrutura do Projeto
	Criando a Base de Conhecimento
	O Papel do VectorDB e Embeddings
	Integrando ao Agente
	Testando o Agente

	Outras Fontes de Conhecimento
	Conclusão

	12. Trabalhando com Memória no Agno
	Diferença entre Memória e Storage
	Estrutura Básica da Memória
	Exemplo Prático
	Entendendo o código
	Configurando a memória (modelo + banco)
	Construindo o agente

	Como Funciona na Prática
	Possibilidades
	Conclusão

	13. Sistemas Multiagentes (Teams) no Agno
	Diferença entre Time e Agente Único
	Estrutura Básica de um Time
	Exemplo Prático
	Entendendo o código

	Como Funciona na Prática
	Variações de Modo de Trabalho
	Possibilidades
	Conclusão

