Criando Agentes com Agno

Asimov Academy

ASIMOV

Criando Agentes com Agno

Conteudo
01. O que o Agno tem de especial? 5
Funcionalidades e diferenciaisdoAgno 5
Exemplopratico. e 6
ConclUuSA0 . . . o o o
02. O que sdo agentes de I1A? 7
OquedefineumagentedelA? e 7
O papeldasferramentasnosagentes 9
DefinicdodeagentedelA e e 9
ConcluS30 . . . o o i e e 9
03. Como um agente executa tarefas? 10
Limitacdo dos modelosde linguagem 10
Opapeldoframeworknaexecugdo 10
Exemplopratico 10
ConClUSA0 . .« v v o e e e e e 11
04. Agno ou LangChain? 12
ComparandoAgnoelangChain e 12
Pontos-chave: e 12
Qualescolher? e e 13
Conclusao o o e e e e 13
05. Configurando o Agno 14
Porqueusaro Agno comoYUVi? o . i e e e e e e e e e e e 14
InstalacdodoYuvi e e e e 14
Criandooambientevirtual 14
Instalando O AGNO L L L e 15
Criandooprimeiroscript o e e e e e e 15
Conectando-S€aGrog v v v i i e e e 16
Etapasparausar: e e e e e e e e 16
Carregandovariaveisdo .€NV o i e e e 16
Executandoocoddigo e e 16
Entendendoaresposta. e 17
ConcluSd0 . . . o o i e 17
Asimov Academy 1

Criando Agentes com Agno

06. Criando nosso primeiro Agente 18
PorqueusaraclasseAgent 18
Criando um agente pesquisadorcom Tavily 18
Instalagdo daferramentaTavily 18
Codigodoagente i i e e 19
Criando um agente analista financeiro com Yahoo Finance 19
Codigodoagente L e 19
Explorando outras possibilidades 20
07. Criando nossas proprias tools 21
Introducdo a Criagdode Ferramentasottt 21
Exemplo de Funcgdo: Conversao de Celsius para Fahrenheit 21
Por que NAO Funciona Imediatamente? 21
Adicionando a Documentacdo (Docstring) o Lo 22
Automatizando o Processo com Ferramentas de Desenvolvimento 23
Exemplode UsONOAZNO o o i i e e e e 23
PossiveisErroseMelhorias 23
ConcluSd0 . . . o o o e 24
08. Usando ChatGPT via API 25
Conectando-seaumModelodaOpenAl i 25
EntendendoaPrecificagdo 25
AlterandooModelonoAgno L e e e e 26
ExplicagdoDetalhada. 26

09. Agno Playground 28

Introducdo ao Agno Playground 28
Como Configuraro Agno Playground 28
Instalando Dependéncias Necessarias 29

TestandooAgno Playground 29

Funcionalidadesdo Agno Playground o 29
HistOrico de SesSOES . . . v v v v i et e e e e e 30
Visualizacdo de ChamadasdeFuncdo 30
Documentagdo e Customizagao it i e e e e 30
Testede FuncBesnoAgente e 30

Historico Detalhado e SessGesdeAgentes i i 31
ProblemasComuns. e e e e e e e e e 31

ConcluS30 . . . o v o e e 32

Asimov Academy 2

Criando Agentes com Agno

10.

11.

12.

13.

Meméria e Storage no Agno

Introducdo a MemoériaTemporaria. oo v
Parametros addHistoryToMessages e numHistoryRuns
Limitagbes da MemériaTemporaria
Armazenamento Persistentecom Storage
Exemplocom SQLiteStorage
Instalando Dependéncias
TestandooStorage
OutrasOpgBesdeStorage i i v i i i i
Conclusd0 . . . v v o e e

Adicionando Conhecimento Externo ao Agente com RAG

Introducdo a Classe Knowledge
Exemplo PraticocomPDF
EstruturadoProjeto e
Criando a Basede Conhecimento
O Papel do VectorDB e Embeddings
IntegrandoaoAgente.
TestandooAgente
Outras Fontesde Conhecimento
Conclusd0 . . o v v o e

Trabalhando com Meméria no Agno

Diferenca entre MemoériaeStorage
EstruturaBasicadaMemoria.
ExemploPratico.
Entendendoocéddigo.
Configurando a memoria (modelo+banco)
Construindooagente
Como FuncionanaPratica,
Possibilidades
Conclusd0 . . o v v i e

Sistemas Multiagentes (Teams) no Agno

Diferencaentre TimeeAgenteUnico
EstruturaBasicadeumTime i
ExemploPratico. e

Entendendoocddigo.
ComoFuncionanaPratica

33
33
33
34
34
34
34
35
35
35

36
36
36
36
37
37
38
38
39
39

41
41
41
41
42
42
42
43
43
43

44
44
44
44
46
46

Asimov Academy

Criando Agentes com Agno

Variagbesde Modode Trabalho 46
Possibilidades e e e 47
ConclUuSA0 . . . o o o e 47
Asimov Academy 4

Criando Agentes com Agno

01. O que o0 Agno tem de especial?

O Agno éum framework dedicado a criacdo de agentes de inteligéncia artificial utilizando Python. Ele foi
desenvolvido para simplificar o trabalho de quem deseja construir agentes capazes de interagir, buscar
informac0es, executar tarefas automatizadas e integrar diferentes sistemas. Apesar de ainda ndo ser o
framework mais conhecido da area, o Agno vem conquistando cada vez mais espaco na comunidade
gragas a sua proposta de oferecer um ambiente pratico, integrado e com foco em produtividade.

Enquanto outros frameworks, como LangChain, LangGraph, RayAl e solu¢des no-code (como N8n,
Make e LangFlow), também prop&em facilitar o desenvolvimento de agentes, muitos deles acabam
exigindo um grande volume de cddigo ou demandam diversas configuragGes para alcangar resultados
mais complexos. O Agno se diferencia principalmente por entregar uma quantidade consideravel de
ferramentas prontas, que podem ser utilizadas quase imediatamente, e por valorizar uma curva de
aprendizado rapida, sem abrir m3o da performance.

Funcionalidades e diferenciais do Agno

Um dos principais diferenciais do Agno é a integracdo com uma grande variedade de provedores de
modelos de linguagem (LLMs), permitindo que o desenvolvedor escolha com facilidade qual modelo
utilizar em cada projeto ou até mesmo combine multiplos modelos em um mesmo agente. Entre os
provedores suportados estao OpenAl, Ollama, Mistral, Gemini, DeepSeek e Grok.

Além disso, o Agno disponibiliza diversas ferramentas nativas para equipar os agentes, facilitando desde
a pesquisa na web até a automacao de tarefas em redes sociais (como WhatsApp, Slack, Discord, e-mail
e Gmail). Também oferece suporte avangado para extragdo de informagdes em sites, manipulagéo de
bases de dados (SQL, Postgres, arquivos CSV) e execucao de comandos ou scripts Python diretamente
a partir do agente, incluindo interacdao com arquivos locais e terminal.

Outra caracteristica importante é a facilidade para criar e integrar ferramentas personalizadas, tor-
nando possivel adaptar o agente a qualquer necessidade especifica do projeto. Para quem precisa
registrar histdricos de conversas, o Agno inclui um médulo de storage que permite salvar interagGes
em bancos de dados locais de maneira simples e eficiente.

A arquitetura do Agno também contempla recursos de memodria, possibilitando que o agente “lembre”
pontos-chave de interagGes anteriores, e inclui suporte a médulos de reasoning (raciocinio), bases de
conhecimento e sistemas multiagentes - estes, chamados de “times” no préprio framework.

Asimov Academy 5

Criando Agentes com Agno

Exemplo pratico

A proposta do Agno de simplificar a construcdo de agentes fica evidente no c6digo. Com poucas linhas,
ja é possivel criar um agente funcional:

from agno.agent import Agent
from agno.tools.tavily import TavilyTools

agent = Agent(tools=[TavilyTools()],
show_tool_calls=True)

agent.print_response('"Search tavily for 'language models''", markdown=True)

Conclusao

O Agno representa uma evolucao significativa no desenvolvimento de agentes de inteligéncia arti-
ficial em Python. Sua proposta alia praticidade, variedade de integracdes e foco em produtividade,
atendendo tanto iniciantes quanto desenvolvedores experientes. Com ferramentas prontas, suporte a
multiplos provedores e médulos avangcados como memoria, reasoning e multiagentes, o framework
torna possivel criar sistemas sofisticados com simplicidade e clareza no codigo.

A cada capitulo, iremos nos aprofundar no uso dos principais recursos do Agno, oferecendo exemplos
praticos e orientando a construcdo de agentes personalizados para diferentes contextos. Assim, o
estudante estara apto a aproveitar todo o potencial da plataforma e criar solu¢bes de IA avancgadas de
forma acessivel e eficiente.

Asimov Academy 6

Criando Agentes com Agno

02. O que sao agentes de IA?

Antes de iniciar a parte pratica da construcdo de agentes com Agno, é fundamental garantir a com-
preensdo dos conceitos que fundamentam a area. Este médulo aborda, de forma breve e teérica, a
definicdo e os elementos essenciais de um agente de IA, preparando o terreno para os proximos passos
praticos do curso.

O que define um agente de 1A?

O termo “agente de IA” ou “Al Agent” tem ganhado destaque nos Gltimos anos. Embora seja frequen-
temente mencionado como parte do futuro da inteligéncia artificial, é importante entender o que
realmente caracteriza um agente.

Para ilustrar a diferenca entre um modelo tradicional e um agente, considere o exemplo do uso do
ChatGPT para solicitar a redagao de um e-mail:

Asimov Academy 7

Criando Agentes com Agno

Ol4. vocé poderia escrever para mim um e-mail para o meu amigo
marcando um café amanha as 16 horas?

Claro! Aqui estd uma sugest3o de e-mail amigével e direto:

Assunto: Café amanha?
Oi [Nome do amigo],
Tudo certo?

Queria te chamar pra tomar um café amanha as 16h, o que acha? Podemos colocar o papo em dia. Me avisa

se esse horério fundona pra vocé — se precisar ajustar, é s6 falar!

Abraco,
Mykael

Se quiser que o tom seja mais formal. mais descontraido ou incluir local, posso ajustar!

OO PM? & Oy

Otimo. agora envie o e-mail para mim. O e-mail do meu amigo é
roberto.santana@gmail.com.

Fico feliz que tenha gostado! &
Porém, neste momento, n30 consigo enviar e-mails diretamente. Mas vocé pode copiar o texto abaixo e

colar no seu aplicativo de e-mail (Gmail. Outlook etc.):

Figura 1: Exemplo dialogo com o ChatGPT

O ChatGPT n&o conseguira executar essa a¢do, pois esta limitado apenas a geracdo de texto, sem

acesso a ferramentas externas.

A principal limitagdo dos modelos tradicionais esta justamente na impossibilidade de executar tarefas
no mundo real, como enviar e-mails, controlar dispositivos ou acessar bancos de dados.

Asimov Academy 8

Criando Agentes com Agno

O papel das ferramentas nos agentes

A diferenga fundamental de um agente de IA esta na capacidade de interagir com o ambiente externo
através de ferramentas. Isso pode incluir:

Acesso a bancos de dados

« Envio de e-mails

Integracao com automacao residencial

Manipulacdo de arquivos ou informac¢des em tempo real

Por exemplo, um agente construido com Agno pode ser equipado com uma ferramenta que acessa um
banco de dados de roteiros de video. Ao solicitar uma lista de criadores cadastrados, o agente chama
uma fungdo especifica (“List Creators”), executa a busca e retorna as informacdes, automatizando
uma tarefa real e personalizada.

Se o agente for configurado com ferramentas de automacao residencial, pode executar comandos
fisicos, como desligar a luz de um comodo, mediante uma simples solicitagdo em linguagem natural.

A presenca dessas ferramentas é o que transforma um modelo de linguagem tradicional em um agente
delA.

Definicao de agente de IA

De forma objetiva:

Um agente de IA é uma LLM (Large Language Model) equipada com ferramentas e rodando
dentro de um loop, capaz de executar agcoes no ambiente ao receber comandos em linguagem
natural.

Conclusao

A evolucdo dos agentes de IA amplia o papel dos modelos de linguagem, permitindo que eles nao
apenas compreendam e gerem texto, mas também executem tarefas automatizadas no mundo real.
A integracao de ferramentas transforma o agente em uma peca ativa no ecossistema digital, com
potencial para impactar desde automacdes simples até processos complexos. Entender essa diferenca
é fundamental para aproveitar todo o poder das plataformas modernas de agentes, como o Agno.

Asimov Academy 9

Criando Agentes com Agno

03. Como um agente executa tarefas?

Apds compreender o conceito de agentes de IA, surge uma questdo essencial: como esses agentes
realmente executam tarefas? Afinal, um modelo de linguagem tradicional (LLM) é, por natureza,
apenas uma grande rede neural capaz de gerar texto, sem capacidade direta de interagdo com o
mundo externo.

Limitacao dos modelos de linguagem

Quando um modelo como o Llama ou o GPT esta rodando localmente ou em servidores, sua fun¢ao
basica é receber entradas de texto e devolver saidas em texto. Esses modelos ndo possuem, por siso, a
capacidade de clicar em telas, executar comandos, controlar sistemas ou realizar acdes no ambiente.

Portanto, toda execucao de tarefa por um agente de IA depende de uma ponte entre o modelo de
linguagem e o ambiente externo.

O papel do framework na execucao

A mudanca fundamental surgiu quando frameworks e APIs, como o proprio Agno ou as APIs da OpenAl
(a partir de 2023, com o lancamento do recurso Function Calling), passaram a permitir que o modelo
de linguagem fosse informado sobre quais fun¢Ges estavam disponiveis para ele executar.

No prompt enviado ao modelo, sdo listadas as fungdes e instru¢des de como solicitar sua execugdo. O
modelo, ao reconhecer que determinada tarefa ndo pode ser realizada apenas com texto, gera uma
mensagem estruturada (por exemplo, em formato JSON) indicando qual funcao deseja chamar e quais
argumentos devem ser utilizados.

O framework (no caso, o Agno) interpreta essa mensagem, executa a fungdo requisitada localmente
(ou na nuvem), obtém o resultado e entdo retorna essa resposta ao modelo de linguagem, que pode
processar, formatar e apresentar ao usuario.

Exemplo pratico

« O usuario solicita ao agente:
“Liste para mim todos os criadores de conte(ido do banco de dados.”

+ O modelo de linguagem, ao receber o pedido, reconhece que nao consegue realizar sozinho a
consulta. Em vez disso, ele gera uma mensagem estruturada solicitando ao framework (Agno) a
execucdo de uma funcdo especifica, como List Creators.

Asimov Academy 10

Criando Agentes com Agno

« O Agno executa a funcao, busca os dados no banco de dados e retorna a resposta ao modelo de
linguagem.

+ O modelo de linguagem, agora com acesso ao resultado, pode processar e apresentar a informa-
¢do ao usuario em formato de texto compreensivel.

Esse processo evidencia que a execucao real das tarefas parte sempre do framework ou aplicacao que
“escuta” as inten¢Oes do modelo e executa, de fato, as funcdes necessarias.

Conclusao

O modelo de linguagem, por si s6, ndo executa tarefas no mundo real. Sua fungdo é reconhecer
intenc¢des, interpretar comandos e gerar mensagens estruturadas para que o framework responsavel
(como 0 Agno) realize as agOes necessarias. Aintegracdo entre modelo, ferramentas e aplicagdo permite
que agentes de |A sejam capazes de realizar tarefas automatizadas, trazendo inteligéncia e autonomia
a diferentes tipos de sistemas.

Asimov Academy 11

Criando Agentes com Agno

04. Agno ou LangChain?

Ao estudar agentes de IA em Python, é comum se deparar com a divida: qual framework utilizar? Entre
as principais opgoes do mercado, Agno e LangChain se destacam por serem bastante completos e
populares, mas atendem a necessidades diferentes.

Comparando Agno e LangChain

O LangChain é hoje a biblioteca mais conhecida para constru¢ado de aplicagGes e agentes com LLMs.
Seu ponto forte esta no nivel de customizagdo: praticamente todos os componentes e comportamentos
podem ser definidos pelo desenvolvedor, possibilitando a criacao de fluxos altamente personalizados.
No entanto, essa flexibilidade traz também maior complexidade, exigindo mais conhecimento técnico
e tempo para configurar funcionalidades como memoéria, gestdo de storage e colaboragdo entre
multiplos agentes.

Por outro lado, o Agno foi desenvolvido com foco em produtividade e simplicidade. Muitas das princi-
pais funcionalidades para construgdo de agentes ja vém prontas, como gerenciamento de memoria,
execucdo de fungdes, logica de colaboragdo entre agentes e sistemas multiagentes. Isso permite
que o desenvolvedor comece rapidamente a construir seus projetos, gastando menos tempo com
configuracGes técnicas e mais tempo naquilo que realmente impacta o resultado final: a elaboragdo
dos prompts e o design das interages.

Pontos-chave:

« Agno

- Vantagem: Grande parte dos recursos ja implementados, velocidade de desenvolvimento,
menor preocupacao com detalhes técnicos.

- Limitacdo: Menor flexibilidade para customizac¢Ges profundas (depende das escolhas feitas
pelos desenvolvedores do framework).

« LangChain

- Vantagem: Alto grau de personalizacdo e controle sobre todos os aspectos do agente e do
fluxo de execucao.

- Limitagdo: Exige mais trabalho manual para configurar cada etapa do agente, aumentando
a curva de aprendizado e o tempo de desenvolvimento.

Asimov Academy 12

Criando Agentes com Agno

Qual escolher?

A escolha depende do seu objetivo:

« Se a prioridade é construir agentes rapidamente, com o menor atrito possivel, o Agno é reco-
mendado. Ele permite focar naquilo que mais importa para a maioria dos casos: a qualidade do
prompt e o design da interagao.

« Se houver necessidade de customizagdo muito especifica, ou o projeto exigir controle total sobre
cada detalhe da arquitetura, o LangChain pode ser a melhor escolha.

Conclusao

Nado existe um framework “melhor” de forma absoluta: cada um atende a perfis e projetos diferentes.
Para a maior parte dos desenvolvedores e para quem esta comegando, o Agno proporciona ganhos
rapidos de produtividade e facilidade no desenvolvimento de agentes de IA. Ja o LangChain é ideal
para quem busca maxima flexibilidade e esta disposto a lidar com uma configuracdo mais detalhada.

Asimov Academy 13

Criando Agentes com Agno

05. Configurando o Agno

Chegou a hora de colocar a mdo na massa. Neste capitulo, vocé vai aprender como configurar seu
ambiente local para comecar a criar agentes com o Agno, usando o terminal e uma IDE Python. Va-
mos instalar o gerenciador de pacotes recomendado, criar o ambiente virtual e fazer nossa primeira
chamada a um modelo de linguagem.

Pré-requisitos: conhecimentos basicos de Python e uma IDE instalada (como VS Code, Cursor
ou PyCharm).

Por que usar o Agno com o Yuvi?

0 Agno recomenda o uso do Yuvi (uv), um gerenciador de pacotes moderno para Python, por ser muito
mais rapido e eficiente que alternativas como pip ou poetry. O Yuvi facilita a criagdo de ambientes
isolados para cada projeto e agiliza a instalacao de bibliotecas.

Instalacao do Yuvi
No terminal da pasta do projeto, execute:

pip install uv

Apds isso, inicialize o projeto com:
uv init

Esse comando cria 0s arquivos essenciais:

« .gitignore

« pyproject.toml

« README .md

« Versao do Python utilizada

Criando o ambiente virtual

Crie o ambiente virtual com:

Asimov Academy 14

Criando Agentes com Agno

uv venv

Ele sera criado em uma pasta propria (. venv) e mantera todas as dependéncias do projeto isoladas.

Instalando o Agno
Com o ambiente pronto, instale o framework Agno:

uv add agno

Criando o primeiro script

Vamos testar nossa primeira integracdo com um modelo de linguagem da Groq. A Groq é uma empresa
de tecnologia - uma startup para ser mais preciso, especializada no desenvolvimento de hardware
e software otimizados para inteligéncia artificial (I1A) e machine learning (ML). A principal pro-
posta da Groq é oferecer aceleragao extrema no processamento de modelos de IA, com foco em
baixa laténcia, altissimo throughput e previsibilidade de desempenho. Vamos usa-la em primeira
instancia devido a gratuidade.

Crie um arquivo chamado ©_11m_call. py e insira o seguinte cédigo:

from agno.models.groqg import Groq
from agno.models.message import Message

model = Groq(id="1lama-3.3-70b-versatile'")
message = Message/(

role="user",
content=[{"type": "text", "text": "Old, meu nome é Rodrigo"}]

response = model.invoke([message])
print(response.choices[0].message.content)

Para executar esse script também sera necessario ter instalado em sua maquina a biblioteca Groq que
pode ser instalada com o seguinte comando:

uv add groq

Asimov Academy 15

Criando Agentes com Agno

Conectando-se a Groq

A Groq é uma plataforma que hospeda modelos open-source (como Llama e DeepSeek) com desem-
penho altissimo — e o melhor: com acesso gratuito.

Etapas para usar:

1. Acesse console.grog.com e crie uma conta.
2. Gere uma APl key (ex: curso-asimov) e copie o valor.
3. Crie um arquivo . env na raiz do projeto com o seguinte contetdo:

GROQ_API_KEY=sua_chave_aqui

Carregando variaveis do .env
Instale o pacote de suporte com:

uv add python-dotenv

E adicione ao seu script:

from dotenv +import load_dotenv
load_dotenv()

Executando o cédigo
Vocé pode rodar o script com:

python 0_1lm_call.py

Ou usar o terminal interativo da sua IDE (como o Cursor) para ver os resultados diretamente. Se
aparecer um erro solicitando o ipykerne'l, basta instala-lo com o comandouv pip install
ipykernel.

Asimov Academy 16

Criando Agentes com Agno

Entendendo a resposta

O Agno retorna as respostas dos modelos com uma estrutura semelhante a da OpenAl. Se vocé seguiu
0 passo a passo corretamente, recebera uma resposta parecida com essa:

0la Rodrigo! Prazer em conhecé-lo! Como esta o seu dia?

Figura 2: Exemplo de saida do nosso primeiro algoritmo

Conclusao

Neste capitulo, vocé deu os primeiros passos essenciais para comegar a trabalhar com inteligéncia
artificial utilizando o Agno. Primeiro, instalou o gerenciador de pacotes Yuvi e criou um ambiente
virtual para manter seu projeto organizado. Em seguida, instalou o Agno, configurou uma chave
de acesso da Groq e realizou sua primeira chamada a um modelo de linguagem (LLM). A partir
daqui, comecaremos a utilizar a classe Agent, que torna o processo de criacao de agentes ainda
mais simples e eficiente. Se vocé chegou até aqui, saiba que o mais dificil ja passou — agora é hora de
explorar todo o potencial do Agno com mais fluidez e autonomia.

Asimov Academy 17

Criando Agentes com Agno

06. Criando nosso primeiro Agente

No capitulo anterior, aprendemos como chamar diretamente um modelo de linguagem com o Agno.
Apesar de funcionar, esse ndo é o fluxo recomendado para projetos reais. A partir de agora, vamos
trabalhar com a classe Agent, que encapsula toda a légica necessaria para interagdo com LLMs, uso
de ferramentas, execucao de funcdes e construcado de fluxos de conversacao.

Por que usar a classe Agent

Aclasse Agent do Agno simplifica a criacdo de agentes inteligentes ao lidar com:

+ Execucdo de fun¢des automaticamente

Integracao com ferramentas externas (como web search)
+ Padroniza¢do de chamadas a modelos de linguagem

Definigdo de instrugGes, memorias e objetivos

Em resumo, ela permite que vocé foque no comportamento do agente e ndo na infraestrutura que o
sustenta.

Criando um agente pesquisador com Tavily

Vamos criar um agente simples chamado Researcher, que faz pesquisas na web em tempo real.

Instalacdo da ferramenta Tavily

Tavily é um servico de pesquisa online que oferece uma API para buscar informagdes na internet. O
Agno ja possui uma integragdo com ela via a ferramenta TavilyTools.

Crie uma conta gratuita em https://www.tavily.com, gere uma API Key e adicione ao seu arquivo
.env:

TAVILY_API_KEY=sua_chave_aqui

Instale o pacote Python:

uv add tavily-python

Asimov Academy 18

Criando Agentes com Agno

Codigo do agente
Crie um arquivo chamado 1_1_researcher.py com o seguinte codigo:

from agno.agent import Agent
from agno.tools.tavily import TavilyTools
from agno.models.groqg import Groq

agent = Agent(
model=Groq(id="11lama-3.3-70b-versatile"),

tools=[TavilyTools()],
debug_mode=True

agent.print_response("Use suas ferramentas para pesquisar a temperatura de hoje em Porto
— Alegre")

Execute com:

uv run 1_1_researcher.py

A resposta mostrara o processo do agente pensando, chamando a ferramenta Tavily e retornando a
resposta final.

Criando um agente analista financeiro com Yahoo Finance

Vamos agora criar um agente especializado em buscar informacdes do mercado financeiro.

Codigo do agente
Crieoarquivo 1_2_analista.py:

from agno.agent import Agent

from agno.models.groqg import Groq

from agno.tools.yahoofinance import YahooFinanceTools
from dotenv +import load_dotenv

load_dotenv ()

agent = Agent(

model=Groq(id="11lama-3.3-70b-versatile"),

tools=[YahooFinanceTools()],

instructions="Use tabelas para mostrar a informagdo final. Nao inclua nenhum outro
— texto.",

Asimov Academy 19

Criando Agentes com Agno

debug_mode=True

agent.print_response('"Qual a cotacdo atual da acgdo da Apple?", stream=True)

Instale o pacote necessario:

uv add yahoo-finance-python

Execute com:

uv run 1_2_analista.py

A resposta devera incluir uma tabela com a cotagdo atual da Apple.

Explorando outras possibilidades

A classe Agent permite muitas outras configuracdes:

instructions: define o comportamento esperado do agente

tools: lista de ferramentas disponiveis
« debug_mode: exibe os bastidores da execucao
« stream=True: ativa resposta continua estilo ChatGPT

Nas proximas aulas, vamos explorar como dar memoria ao agente, conecta-lo a maltiplas ferramentas
e torna-lo mais auténomo. ## Conclusao

Neste capitulo, vocé aprendeu:

A criar agentes com a classe Agent

A usar ferramentas como Tavily e Yahoo Finance

A configurar instrucdes e stream de resposta

A executar agentes via terminal comuv run

Com isso, comecamos a estruturar agentes realmente funcionais e conectados com o mundo real. No
préximo capitulo, daremos novos poderes ao agente com memoria e fungGes customizadas.

Asimov Academy 20

Criando Agentes com Agno

07. Criando nossas proprias tools

Ap6s a criagdo do nosso primeiro agente e aimplementagdo de ferramentas padrdo do Agno, a proxima
divida é: como podemos criar nossas proprias ferramentas e oferecé-las ao modelo de linguagem?
Nesta aula, vamos aprender a criar essas ferramentas personalizadas.

Introdugdo a Criacdo de Ferramentas

O primeiro passo foi criar um novo arquivo chamado 13_onToo'ls, onde vamos desenvolver nossas
ferramentas personalizadas. Vamos comegar com uma ferramenta simples para converter Celsius
para Fahrenheit. Embora ja tenhamos um modelo basico de agente que consulta a temperatura
em Porto Alegre, vamos adicionar uma funcionalidade que permita ao agente converter valores de
temperatura. Vamos usar o agente anterior como base para usarmos nossa nova ferramenta.

Exemplo de Funcado: Conversao de Celsius para Fahrenheit

Vamos criar a fungdo de conversao de Celsius para Fahrenheit. A formula para a converséo é simples:

9
Temperatura em Fahrenheit = (Temperatura em Celsius x 5> + 32

Agora, vamos implementa-la em Python:

def celsius_to_fh(temperatura_celsius: float):
return (temperatura_celsius * 9/5) + 32

Essa fungdo simples recebe um valor em Celsius e retorna o valor convertido em Fahrenheit. Agora,
podemos passar essa funcdo para o modelo de linguagem, mas ainda ndo esta funcionando da maneira
que esperamos. Vamos entender por que.

Por que NAO Funciona Imediatamente?

Mesmo com a func¢do definida, ela ndo sera reconhecida pelo modelo de linguagem imediatamente.
Isso ocorre porque o modelo precisa saber como usar a fun¢ao. Quando instanciamos o agente pela
primeira vez, o Agno passa um prompt inicial que lista todas as ferramentas disponiveis, com uma
breve descricao de como elas funcionam.

Asimov Academy 21

Criando Agentes com Agno

No entanto, essa fun¢do de conversdo ainda ndo esta documentada, e 0 modelo ndo sabera usé-la
corretamente. O Agno, por outro lado, permite integrar a documentacdo diretamente no cédigo, o que
facilita o processo de informar ao modelo como utiliza-la.

Adicionando a Documentacgao (Docstring)

A documentac¢do de uma fungdo no Python é feita através do docstring, um comentario estruturado
que descreve o que a funcao faz, seus parametros e o valor de retorno. No nosso caso, a documentacao

ficaria assim:

def celsius_to_fh(temperatura_celsius: float):

nmin

Converte temperatura de Celsius para Fahrenheit.

Args:

temperatura_celsius (float): Temperatura em graus Celsius
Returns:

float: Temperatura convertida para Fahrenheit

nmin

return (temperatura_celsius * 9/5) + 32

Funcao de Conversao de Temperatura: Explicacao Detalhada

1. def celsius_to_fahrenheit(temperatura_celsius: float) -> float:

+ def indica que estamos definindo uma funcao.

« celsius_to_fahrenheit é o nome dafungdo, que descreve sua agao.

« temperatura_celsius: floatéoparametrodeentradadafuncdo,com anotacédo
de tipo indicando que esperamos um nimero decimal (float).

« => float indica o tipo de retorno da funcdo, ou seja, a fun¢do devolverd um valor

decimal.
2. Docstring (" ... ")

« Essa parte é a documentacdo da fungdo.

+ Explica o que a fungdo faz, quais sdo os argumentos esperados e o que a funcao retorna.

« Essa documentacdo é importante porque o Agno consegue ler o docstring e informar o
modelo de linguagem sobre como utilizar a funcao.

3. return (temperatura_celsius * 9/5) + 32

+ Essalinha realiza a conversdao matematica.

Asimov Academy 22

Criando Agentes com Agno

+ Primeiro multiplica a temperatura em Celsius por 9/5 (ou 1,8).
+ Depois soma 32 para completar a conversao para Fahrenheit.
« returnsignifica que o resultado desta operacao sera enviado como saida da fungdo.

Automatizando o Processo com Ferramentas de Desenvolvimento

Se vocé estiver usando ferramentas como Cursor ou uma extensao no VS Code para programacao
com agentes de IA, a geracao da docstring pode ser feita automaticamente. No Cursor, por exemplo,
vocé pode usar o comando Ctr1-K para gerar a documentagao diretamente com a frase “generate
docstring”.

Isso facilita bastante, pois o proprio modelo de linguagem pode gerar a documentagao para vocé, sem
precisar escrever manualmente.

Exemplo de Uso no Agno

Agora que afungdo estd documentada, podemos usa-la no agente. O modelo de linguagem, ao perceber
que a fungdo foi definida, podera utiliza-la em um cenario como o seguinte:

« O usuario solicita:
“Qual é a temperatura de hoje em Porto Alegre, em Fahrenheit?”

« O modelo de linguagem percebe que precisa primeiro fazer uma busca pela temperatura atual
(em Celsius) e depois realizar a conversao para Fahrenheit.

+H

Exemplo de cdédigo para realizar a pesquisa e conversdo temperatura_celsius

agente.pesquisar_temperatura("Porto Alegre") temperatura_fahrenheit

celsius_to_fahrenheit(temperatura_celsius)

O Agno, ao processar a consulta, executa a pesquisa, obtém a temperatura em Celsius e realiza a
conversdo automaticamente, retornando a resposta ao usuario:

A temperatura de hoje em Porto Alegre é 22°C, o que equivale a 71.6°F.

Possiveis Erros e Melhorias

Se 0 modelo ndo retornar o valor esperado, pode ser necessario revisar o modelo utilizado. Modelos
pequenos, como o 70B, podem cometer erros de interpretacao e chamadas de func¢ao. Para resultados
mais precisos, recomenda-se o uso de modelos maiores, como o GPT-4.1 ou Cloud 3.5.

Asimov Academy 23

Criando Agentes com Agno

Embora o modelo tenha retornado uma temperatura de 22°C, isso pode ter sido um erro de interpreta-
¢do da resposta da pesquisa. O importante é que a fung¢ao de conversao foi chamada corretamente e
o resultado final foi satisfatorio, embora com alguns detalhes a serem ajustados.

Conclusao

Neste capitulo, aprendemos como criar fun¢des personalizadas para nossos agentes, como documenta-
las corretamente para que o modelo de linguagem possa usa-las e como integrar essa funcionalidade
ao Agno. Além disso, vimos como a escolha do modelo de linguagem pode afetar a precisdo dos
resultados. Nos proximos capitulos, continuaremos a aprender a trabalhar com modelos mais robustos
para melhorar ainda mais a eficiéncia do nosso agente.

Asimov Academy 24

Criando Agentes com Agno

08. Usando ChatGPT via API

Apds aprender a trabalhar com modelos locais e outros provedores, vamos agora trocar o nosso
modelo para um da OpenAl — mais especificamente o GPT-4.1 Mini — e conhecer o Playground do
Agno, que oferece uma interface mais amigavel que o terminal.

Conectando-se a um Modelo da OpenAl

O procedimento para se conectar a qualquer provedor de modelos é o mesmo: basta buscar pelo
nome do provedor (como GPT, Gemini, OpenAlI) ou pela palavra API.

Neste exemplo, usaremos a OpenAl.

Os principais provedores, como OpenAl, Anthropic (Claude) e Google (Gemini), sao pagos.

Entendendo a Precificacao

Os modelos cobram por uso de duas formas:

1. Custo de entrada (input) — tokens que enviamos ao modelo.
2. Custo de saida (output) — tokens que o modelo gera como resposta.

O custo de saida costuma ser mais alto, pois gerar texto é mais custoso do que apenas processa-lo.

Exemplo (valores de agosto/2025):

« GPT-4.1 Mini
Entrada: USS 0,40 por 1 milhdo de tokens
Saida: USS$ 1,60 por 1 milhdo de tokens Para referéncia:

+ 1 milhao de tokens = 600 mil palavras.

« Considerando uma média de 200 palavras/minuto, isso representa cerca de 3 mil minutos (50
horas) de fala.

Conclusao: Hoje, usar modelos via API é extremamente barato. Um deposito inicial de US$ 5 (cerca de
RS 25-30) pode sustentar projetos por bastante tempo. ## Criando a Conta e Obtendo a API Key

1. Crie uma conta na OpenAl.

2. Va em Settings » Billing e adicione saldo.

3. Geresua API Key.

4. No projeto, adicione a chave ao arquivo .env:

Asimov Academy 25

https://platform.openai.com/

Criando Agentes com Agno

OPENAI_API_KEY="sua_chave_aqui"

Alterando o Modelo no Agno
Com a chave configurada, podemos substituir o modelo anterior (ex.: Grok) por um da OpenAl.

from agno.models.openai import OpenAIChat
from agno.agent import Agent

agent = Agent(
model=0penAIChat(id="gpt-4.1-mini"),
demais configuragédes...

Se ainda ndo tiver a biblioteca instalada:

uv add openai

Explicacdo Detalhada

1. Importacgoes

« from agno.models.openai import OpenAIChat:importa a classe responsavel
por integrar com modelos da OpenAl.
« from agno.agent import Agent:importaa classe base para criar agentes no Agno.

2. Instanciando o agente

« model=0penAIChat(id="gpt-4.1-mini"): define qual modelo sera utilizado.
« id="gpt-4.1-mini": especifica a versao do modelo desejada.

3. Execugao

+ Ao rodar o agente, todas as interacdes serdo enviadas para o GPT-4.1 Mini. ## Testando no
Projeto

Podemos reaproveitar o projeto anterior e comparar os resultados:

« Grok: interpretou incorretamente a temperatura, retornando valores imprecisos.
+ GPT-4.1 Mini: entendeu corretamente o texto e retornou a temperatura real (ex.: 18 °C) sem
alucinacgoes. ## Usando o Playground do Agno

Asimov Academy 26

Criando Agentes com Agno

Embora o terminal seja funcional, ele ndo é tdo visual como vocé pode ver no exemplo a seguir:

Use suas ferramentas para pesquisar a temperatura de hoje em Porto Alegre

Tool Calls

web_search_using tavily(max_results=1, query=temperatura hoje em Porto Alegre)
web_search_using tavily(max_results=1, query=today's weather in Porto Alegre)
ax_results=1, query=Porto Alegre temperature now)

(

(
web_search_using_tavily(m.
web_search_using_tavily(max_results=1, query=Porto Alegre temperature on August 14, 2025)

A temperatura em Porto Alegre hoje é de 19°C com céu claro. A previsdo para os proximos dias também é
estavel.

Figura 3: Exemplo no Terminal

O Playground do Agno oferece:

« Interface web para execuc¢ao e depuracdo de agentes.
« Visualizagcdo passo a passo das chamadas e respostas.
« Histdrico organizado para referéncia.

Isso torna o desenvolvimento mais pratico e rapido. ## Conclusdo

Neste capitulo, aprendemos a:

+ Entender a cobranca por tokens.

Criar conta na OpenAl e gerar a API Key.

Alterar o codigo para usar o GPT-4.1 Mini no Agno.

Comparar resultados entre diferentes modelos.

Com isso, vocé esta pronto para integrar modelos avancados ao seu agente e aproveitar ao maximo os
recursos da OpenAl dentro do Agno. No proximo capitulo exploraremos o Playground.

Asimov Academy 27

Criando Agentes com Agno

09. Agno Playground

Agora vamos aprender sobre o Agno Playground, uma ferramenta muito mais eficiente e visual para o
desenvolvimento de agentes. Com o Playground, podemos depurar e testar nossos agentes de uma
forma mais fluida e organizada, comparado ao terminal, que é limitado para visualizacdo e interacao.

Introducao ao Agno Playground

O Agno Playground é uma interface que permite desenvolver, testar e depurar agentes de maneira
muito mais intuitiva. Ao invés de debugar no terminal, onde é dificil acompanhar o fluxo e o histérico, o
Playground oferece visualizacdo clara das sesses e memoria dos agentes, facilitando todo o processo
de desenvolvimento.

Como Configurar o Agno Playground

Para usar o Agno Playground, o processo é simples. Vamos comegar.

1. Comentar o cédigo antigo: No inicio, comentamos a linha de c6digo que estava executando o
agente diretamente pelo terminal.

2. Importagdes adicionais: PrecisamosimportarasclassesplaygroundeservePlaygroundApp
do Agno.

from agno.playground import Playground, serve_playground_app

3. Criando o Playground: Vamos criar o playground passando a lista de agentes que queremos
testar:

app = Playground(agents=[
agent
1) .get_app()

4. Configurando o método de execucdo: Usamos o método serve_playground_app, que
exige o nome do arquivo Python onde estamos executando o agente, garantindo que o Play-
ground esteja ativo.

if __name__ == '__main__"':
serve_playground_app('13_onTools:app', reload=True)

Asimov Academy 28

Criando Agentes com Agno

Instalando Dependéncias Necessarias

Caso o Agno Playground peca bibliotecas adicionais, instale-as utilizando os seguintes comandos:

uv add fastapi
uv add uvcore

Apds essas instalagdes, basta executar o codigo e iniciar o servidor do Playground.

Testando o Agno Playground

Agora que o Playground esta configurado, podemos testar nosso agente de forma mais interativa.

1. Abra o terminal e execute o script.

2. Apos iniciar o Playground com app. run(), o servidor local do Agno estara ativo. Para acessa-
lo, abra o navegador de sua preferéncia, digite o endereco do localhost e nao se esqueca de
adicionar /v1 ao final do endereco.

PIayground 3 AGENTS = TEAMS % WORKFLOWS

PLAYGROUND
ENDPOINT

LOCALHOST:7777/V1

AGENTE DO TEMPO

SESSTONS

WHICH TOOLS DO YOU TELL ME ABOUT WHAT'S YOUR SPECIAL
HAVE ACCESS TO? YOURSELF SKILL?

No session found

Figura 4: Exemplo do Playground

Dica: Se houver outros agentes rodando na mesma porta, altere a porta ou feche as instancias
anteriores para evitar conflito.

Funcionalidades do Agno Playground

No Agno Playground, temos varias funcionalidades Uteis para testar e depurar agentes:

Asimov Academy 29

Criando Agentes com Agno

Historico de Sessoes

O Playground registra todas as sessGes realizadas, mostrando o histérico completo das interagdes.
Isso facilita a depuracao, pois vocé pode ver exatamente o que aconteceu em cada sessao.

Visualizacdo de Chamadas de Funcao

Cada vez que o agente utiliza uma funcdo, o Playground exibe como a funcao foi chamada, com
parametros e resultados. Isso permite que vocé acompanhe o fluxo de execucao do agente de forma
clara.

Documentacao e Customizagao

No Agno Playground, também podemos personalizar o nome dos agentes, o que facilita a organizagao
e documentacao do que cada agente faz. No exemplo abaixo, renomeamos o agente para agente do
tempo, que lida com informacGes de temperatura.

agent = Agent(
name="Agente do tempo", #nova linha adicionando um nome ao agente
model=0penAIChat(id="gpt-4.1-mini"),
tools=[
TavilyTools(),
celsius_to_fh,

]

Teste de Fungoes no Agente

O Agno Playground permite que vocé interaja diretamente com o agente no navegador. Por exemplo,
se pedirmos para o agente pesquisar a temperatura atual em Pernambuco e para converter de Celsius
para Fahrenheit, ele ira utilizar o Tavily e a fungdo de conversdo que ja definimos para fornecer a
resposta correta.

Asimov Academy 30

Criando Agentes com Agno

P|ayg|’0und 43 AGENTS & TEAMS S WORKFLOWS

M consegue me dizer qual a temperatura atual em Pernambuco e

converter a mesma para fahrenheit?

€@ BEHIND THE SC

> WEB_SEARCH_USING_TAVILY () CELSIUS_TO_FH (3)

A temperatura atual em Pernambuco estd em torno de 28°C. Convertendo para Fahrenheit,
essa temperatura & aproximadamente 86°F. Quer saber mais alguma coisa?

Figura 5: Exemplo de uso das ferramentas

Como pudemos ver, além de exibir a saida, o Playground também nos permite visualizar quais fer-
ramentas o agente utilizou. Nesse caso, ele utilizou as duas ferramentas as quais nés concedemos
acesso.

Historico Detalhado e Sessdes de Agentes

Uma das grandes vantagens do Agno Playground é o acesso ao historico detalhado das interagGes.
Vocé pode visualizar os detalhes de cada sessao, incluindo o tempo gasto, tokens usados e chamadas
de funcao realizadas.

« Tokens Gasto: O Playground mostra o nimero de tokens utilizados em cada sessao, permitindo
estimar os custos de execucao.
« Tempo de Execugdo: O tempo que o agente leva para processar as fungdes também é registrado.

Problemas Comuns

Ao utilizar o Agno Playground, é possivel se deparar com alguns problemas frequentes. Abaixo
listamos os mais comuns e suas solucoes:

Asimov Academy 31

Criando Agentes com Agno

1. Navegadores com politicas restritivas

« Navegadores como Brave e Safari podem bloquear algumas funcionalidades do Play-
ground devido as politicas de privacidade e protecdo de dados.
+ Solugao: Recomenda-se usar o Chrome, Edge, Firefox, dentre outros.

2. **Uso do endpoint v1 no localhost

« Eimportante adicionar /v1 ao final do endereco do localhost ao acessar o Playground.
« Isso garante que o navegador acesse o endpoint correto do servidor, evitando problemas
de roteamento ou falta de resposta.

3. + Problemas com sessdes nao salvas
« Em algumas maquinas, o Agno pode apresentar comportamento inesperado, ndo salvando
corretamente as sessdes dos agentes.
« Situacdo ja foi reportada a equipe do Agno.
« Solugdo proviséria: utilizar a versdo 1.5.0 do Agno Playground, que ndo apresenta este

problema.

Conclusao

Neste capitulo, aprendemos como configurar e utilizar o Agno Playground para desenvolver e depurar
agentes de forma interativa e eficiente. As principais vantagens incluem:

« Visualizacdo do histérico de sessdes e chamadas de fungao;
« Capacidade de personalizar agentes e atualizar em tempo real;
« Acompanhamento detalhado de tokens gastos e tempo de execucao.

Com essas ferramentas, o desenvolvimento de agentes no Agno se torna muito mais fluido e produtivo.
No préximo capitulo, exploraremos como trabalhar com meméria e sessGes em mais detalhes.

Asimov Academy 32

Criando Agentes com Agno

10. Memoria e Storage no Agno

Agora vamos aprender como implementar memdria nos nossos agentes para que eles sejam capazes
de manter o contexto de conversas anteriores, e como utilizar o moédulo Storage do Agno para salvar
permanentemente o histérico de sessdes.

Introdugdo a Memoria Temporaria

O Agno Playground é o nosso ambiente padrdo para desenvolver e testar agentes, oferecendo muito
mais recursos e clareza na visualizacdo das intera¢des do que o terminal. No entanto, por padrao,
o0 agente ndo mantém o histérico completo das conversas. Isso significa que, se enviarmos uma
mensagem informando nosso nome e em seguida enviarmos uma pergunta perguntando o nosso
nome, o agente inicialmente ndo sabera responder corretamente, pois apenas processa as mensagens
dainteracdo atual.

Parametros addHistoryToMessages e numHistoryRuns

Para habilitar a meméria temporaria, podemos usar o parametro:

addHistoryToMessages=True

Esse parametro adiciona o histérico das Gltimas mensagens ao contexto enviado para o modelo. Ele
funciona junto com:

numHistoryRuns=3

O valor 3 indica que apenas as trés Ultimas interagGes serdo enviadas ao modelo. Podemos aumentar
esse nimero conforme a necessidade.

Exemplo de Uso

agent = Agent(
model=0penAIChat(id="gpt-4.1-mini"),
tools=[...],
addHistoryToMessages=True,
numHistoryRuns=3

Com addHistoryToMessages=True, o agente passa a lembrar informacdes recentes. Aumentar
numHistoryRuns expande o contexto, mas também eleva o custo de tokens.

Asimov Academy 33

Criando Agentes com Agno

Dica: Usar um valor pequeno reduz custos, pois menos historico é enviado a cada requisigao.

Limitac6es da Meméria Temporaria

Essa memoria é volatil. Se o servidor ou o Playground for reiniciado, o histérico se perde. O histérico

exibido no Playground é apenas visual e ndo é persistido pelo modelo.

Para manter as conversas de forma permanente, precisamos utilizar um Storage.

Armazenamento Persistente com Storage

O méddulo Storage do Agno permite salvar conversas e dados do agente no computador ou em bancos

de dados externos, garantindo que o historico ndo seja perdido entre sessées.

Exemplo com SQL1iteStorage

O SQLite é um banco de dados leve, baseado em arquivo fisico, ideal para testes e desenvolvimento.

from agno.storage.sqlite import SQLiteStorage

Instancia o storage SQLite

db = SQLiteStorage(
table_name="agent_sessions",
db_file="/temp/agent.db"

Passa o storage para o agente

agent = Agent(
model=0penAIChat(id="gpt-4.1-mini"),
tools=[...],
storage=db

+ table_name: nome da tabela onde as sessoes serdo armazenadas.
« db_f1le: caminho do arquivo fisico que guardara o banco.

Atencao: Se o arquivo for excluido, o historico sera perdido.

Instalando Dependéncias

O SQLite no Agno utiliza SQLAlchemy como backend. Caso ndo esteja instalado:

Asimov Academy

34

Criando Agentes com Agno

uv add sqglalchemy

Testando o Storage

1. Inicie o agente com o storage configurado.

2. Inicieuma conversa: 0la, tudo bem com vocé?

3. Pare e reinicie o servidor.

4. Ao selecionar novamente o agente no Playground, a conversa anterior estara disponivel.

Outras Op¢oes de Storage

Além do SQLite, o Agno suporta:

MongoDB - recomendado para producao.

PostgreSQL - banco relacional robusto.
+ Redis - armazenamento rapido em memoria.
« YAML - formato de arquivo simples para persisténcia local.

Nos proximos projetos, exploraremos outras op¢des, principalmente para uso em produgao.

Conclusao

Neste capitulo vimos como habilitar a memoria temporaria nos agentes, entendendo a fung¢ao de
addHistoryToMessages e numHistoryRuns e seus impactos no custo e no contexto de execu-
¢do. Exploramos também as limitagGes dessa abordagem e por que, em muitos casos, é necessario
configurar um Storage para preservar as interagées. Conhecemos o uso pratico do SQLite para esse fim
e refletimos sobre as diferencas entre adota-lo em ambientes de desenvolvimento e migrar para solu-
¢des mais robustas, como PostgreSQL ou MongoDB, quando o projeto evolui para producdo. Essa base
permitirad que vocé desenvolva agentes mais inteligentes, capazes de manter e recuperar informacdes
de forma eficiente, garantindo uma experiéncia continua para o usuario.

Asimov Academy 35

Criando Agentes com Agno

11. Adicionando Conhecimento Externo ao Agente com RAG

Agora que aprendemos a dar ferramentas para o agente, habilitar memoria e salvar sessdes em banco
de dados, vamos avancar para um ponto fundamental: permitir que o agente acesse conhecimento
externo. Isso é (til quando precisamos trabalhar com grandes volumes de informacdo, como docu-
mentos PDF extensos, repositorios de arquivos ou bases de dados corporativas.

Introdugdo a Classe Knowledge

0 Agno fornece a classe Knowledge, que permite processar e incorporar diferentes fontes de infor-
macao ao modelo. Entre as possibilidades, podemos integrar:

« PDFs locais ou da internet;
+ Objetos armazenados em S3 da aws;

Sites e conteidos da web (incluindo Wikipedia e YouTube);
Arquivos JSON e DOCX;
« Papers do arXiv;

Entre outros formatos.

Exemplo Pratico com PDF

Para o exemplo, utilizaremos o relatério Global EV Outlook 2025 sobre o mercado de veiculos elétricos.
Nosso objetivo é criar um agente capaz de responder perguntas baseadas nesse documento.

Estrutura do Projeto

1. Criarum arquivo pdfagent. py.

2. Importar as classes necessarias: python from agno.agent import Agent from
agno.playground 1import Playground, serve_playground_app from
agno.storage.sqlite import SQLiteStorage from agno.models.openaii
import OpenAIChat from agno.knowledge.pdf import PDFKnowledgeBase,
PDFReader from agno.vectordb.chroma import ChromaDB

3. Instanciar o banco vetorial (VectorDB) com ChromaDB.

4. Criar a base de conhecimento PDFKnowledgeBase apontando para o PDF desejado.

5. Associar essa base de conhecimento ao agente.

Asimov Academy 36

Criando Agentes com Agno

0 que cada um faz?

Agent: define o agente (modelo + ferramentas + memaria/knowledge).

Playground [serve_playground_app: expde o agente numa Ul local.

SQLiteStorage: salva o historico de sessGes em disco.

OpenAlChat: modelo de linguagem usado pelo agente.
PDFKnowledgeBase /| PDFReader: cria a base de conhecimento a partir de PDF(s).

ChromabDB: banco vetorial que armazena os embeddings do PDF.

Criando a Base de Conhecimento

Instanciando o banco vetorial

vectordb = ChromaDB(
collection="pdfAgent",
persist_directory="/temp/chroma_db"

Criando a base de conhecimento a partir do PDF

knowledge = PDFKnowledgeBase (
path="GlobalEVOutlook2025.pdf", # caminho do PDF (pode ser lista ou diretodrio)
vectordb=vectordb, # usa o Chroma definido acima
reader=PDFReader (chunk=True) # extrai texto e fatia em pedacos (chunks)

Chunking: o parametro chunk=True divide o documento em partes menores para processa-
mento mais eficiente.

Apds criar a base, executamos knowledge.load () na primeira vez para processar e salvar os
dados no VectorDB.

O Papel do VectorDB e Embeddings

O VectorDB transforma textos em vetores matematicos (via embeddings), permitindo buscar in-
formacdes por similaridade semantica e ndo apenas por correspondéncia exata de palavras. Isso
significa que, se perguntarmos sobre “veiculos elétricos”, ele também encontrara trechos que mencio-
nem “carros elétricos”.

Essa abordagem é conhecida como RAG (Retrieval-Augmented Generation), onde buscamos apenas os
trechos relevantes e os passamos ao modelo como contexto para gerar a resposta.

Asimov Academy 37

Criando Agentes com Agno

Integrando ao Agente

agent = Agent(
name="Agente de PDF",
model=0penAIChat(id="gpt-4.1-mini"),
storage=db,
knowledge=knowledge,
instructions="Vocé deve chamar o usuario de senhor",
description="",
add_history_to_messages=True,
search_knowledge=True,
num_history_runs=3,
debug_mode=True

No __main executamos:

—_—

if __name__ == '__main__"':
knowledge.load() # Apenas na primeira execugdo
serve_playground_app('pdfagent:app', reload=True)

Na primeira execucdo, vai levar algum tempo, mas ap0s a indexacdo inicial, o agente estara pronto
para responder perguntas sobre o documento.

Testando o Agente

Exemplo de interacao:

Asimov Academy 38

Criando Agentes com Agno

Playground 43 AGENTS W TEAMS % WORKFLOWS

Qual a situacao dos carros elétricos no Brasil?

SEARCH_KNOWLEDGE_BASE (©)

Senhor, a situacdo dos carros elétricos no Brasil esta em crescimento significativo. Em 2024,
as vendas de carros elétricos no Brasil mais do que dobraram, alcangando cerca de 125.000
unidades vendidas, e a participagao dos carros elétricos nas vendas totais de veiculos subiu
para 6,5%. Este aumento se deve principalmente a incentivos governamentais, como isencdes
fiscais, redugdo das taxas de registro, flexibilizagao em restrigdes de tréfego para velculos
elétricos e os altos pregos dos combustiveis fosseis.

Além disso, no primeiro trimestre de 2025, as vendas de carros elétricos no Brasil
continuaram crescendo, com um aumento de 40% em relagio ao mesmo perfodo do ano
anterior. O mercado de carros elétricos no Brasil é influenciado pela presenca crescente de
veiculos elétricos mais acessiveis, muitos deles importados da China.

Se desejar, posso fornecer mais detalhes ou informacoes especificas, senhor.

Figura 6: Exemplo com RAG

O agente busca no VectorDB os trechos mais relevantes, insere-os no contexto e gera a resposta.

Outras Fontes de Conhecimento

Além de PDFs, o Agno oferece classes para diversas origens:

arXivKnowledge - papers cientificos;

CSVKnowledge - arquivos . csv;

DocxKnowledge - documentos . docx;

JSONKnowledge - arquivos . json;

WebsiteKnowledge - captura contelido de paginas web e links internos.

A légica de uso é a mesma: instanciar a base, processar os dados e passa-la como knowledge ao
agente.

Conclusao

Neste capitulo, exploramos como ampliar o alcance do agente utilizando RAG para integrar conheci-
mento externo. Vimos como criar uma base de conhecimento a partir de PDFs, armazena-la em um

Asimov Academy 39

Criando Agentes com Agno

banco vetorial e habilitar buscas semanticas para fornecer respostas contextualizadas. Esse recurso
transforma o agente em um especialista sob demanda, capaz de responder com precisao sobre qual-
quer acervo de informagdes que disponibilizarmos, seja um relatério corporativo, uma base cientifica
ou até mesmo um conjunto de sites relevantes.

Asimov Academy 40

Criando Agentes com Agno

12. Trabalhando com Memaria no Agno

Agora que ja dominamos ferramentas, Knowledge/RAG e Storage, vamos explorar a Meméria do Agno
— um mecanismo que registra, de forma resumida e persistente, informacdes relevantes sobre o
usuario e a conversa (ex.: nome, preferéncias, fatos importantes). Diferente do histérico (janela de
contexto) e do storage (log completo das sessdes), a memodria traz s6 o essencial para proximas
interacdes, reduzindo custo de tokens e aumentando personalizac¢ao.

Diferenca entre Memoria e Storage

No Agno:

« Historico de Mensagens: contexto imediato enviado ao modelo (controlado poraddHistoryToMessages
e numHistoryRuns).

« Storage: persisténcia completa das sessdes e historico em banco de dados.

« Meméria: registro resumido e estruturado de informacdes relevantes sobre o usuério ou a
interacdo, gerenciado automaticamente por um “agente auxiliar”.

Estrutura Basica da Memoria

A memoria funciona como um assistente paralelo que:

. Analisa as mensagens trocadas.
. Extrai dados importantes (nome, preferéncias, informagdes pessoais relevantes ao contexto).
. Salva esses dados em um banco local (SQLite ou outros).

A W N =

. Disponibiliza-os ao agente principal em todas as conversas.

Exemplo Pratico

from agno.agent import Agent

from agno.tools.tavily import TavilyTools

from agno.models.openai import OpenAIChat

from agno.playground import Playground, serve_playground_app
from agno.memory.v2.memory -import Memory

from agno.memory.v2.db.sqlite import SqliteMemoryDb

memory = Memory (
model=0penAIChat(id="gpt-4.1-mini"),
db=SqliteMemoryDb (table_name="user_memories", db_file="tmp/agent.db"),

Asimov Academy 41

Criando Agentes com Agno

agent = Agent(
model=0penAIChat(id="gpt-4.1-mini"),
tools=[TavilyTools()],
instructions="Vocé é um pesquisador. Responda sempre chamando o usuario de senhor.",
memory=memory,
enable_agentic_memory=True,
debug_mode=True

app = Playground(agents=[
agent
1) .get_app()

if __name__ == "__main__":
serve_playground_app("31_memory:app", reload=True)

Entendendo o cédigo

Configurando a memaéria (modelo + banco)

memory = Memory (
model=0penAIChat(id="gpt-4.1-mini"),
db=SqliteMemoryDb(table_name="user_memories", db_file="tmp/agent.db"),

« model=0penAIChat(...):amemériatem seu préprio LLM, usado para:

- detectar trechos “memoraveis” na conversa (ex.: “meu nome é X”),
- resumir/estruturar e gravar no banco (tépico, valor, etc.).

« db=SqliteMemoryDb(...):amemoriaé persistidaem tmp/agent.db.

- table_name="user_memories": tabela onde os registros ficam.

Construindo o agente

agent = Agent(
model=0penAIChat(id="gpt-4.1-mini"),
tools=[TavilyTools()],
instructions="Vocé é um pesquisador. Responda sempre chamando o usuario de senhor.",
memory=memory,
enable_agentic_memory=True,
debug_mode=True

Asimov Academy

42

Criando Agentes com Agno

mode: LLM primario do agente (responde ao usuario e decide usar tools).

tools=[TavilyTools()]: da capacidade de pesquisa ao agente.
« instructions: system prompt; define tom e conduta (“chame o usuario de ‘senhor’”).
« memory=memory: conecta o médulo de memorias criado acima.

enable_agentic_memory=True: habilita o fluxo agente-com-meméria:

- 0 agente pode disparar a fungao interna (ex.: updateUserMemory)
para registrar fatos importantes automaticamente.

debug_mode=True: opcional; loga detalhadamente as chamadas de tool/memoéria.

O restante do codigo diz respeito aimportagdes e a execugado do Playground que nos ja conhecemos.

Como Funciona na Pratica

1. O usuario diz: “Meu nome é Rodrigo”.

2. O agente registra na meméria: Nome do usudrio: Rodrigo.

3. Em qualquer conversa futura, mesmo sem histérico recente, o agente podera responder: “Senhor
Rodrigo”.

4, E possivel armazenar miltiplos tipos de informacdes: preferéncias, dados familiares, histérico
de atendimento.

Possibilidades

« Atendimento ao cliente com registro de histérico personalizado.
« Assistentes pessoais que lembram preferéncias e dados do usuario.
« Agentes que priorizam informagdes essenciais extraidas de longas conversas.

Conclusao

O recurso de Memoria do Agno é uma ferramenta poderosa para criar agentes mais contextuais e
personalizados. Ao registrar informacdes resumidas e relevantes, evitamos depender apenas de janelas
de contexto extensas e reduzimos custos com tokens, mantendo a experiéncia do usuario fluida e
continua. Essa abordagem abre caminho para solu¢des mais inteligentes em atendimento, suporte e
personalizagdo de servicos.

Asimov Academy 43

Criando Agentes com Agno

13. Sistemas Multiagentes (Teams) no Agno

Agora que ja dominamos ferramentas, RAG/Knowledge e Storage, vamos explorar os Times (Teams):
uma forma de combinar varios agentes especializados para resolver tarefas complexas. Ao invés
de um Unico agente com muitas ferramentas, dividimos responsabilidades em membros com papéis
claros e, opcionalmente, um lider que roteia, coordena ou sintetiza respostas.

Diferenga entre Time e Agente Unico

No Agno, vocé pode resolver problemas de duas formas:

« Agente Unico: um LLM com um prompt claro e um conjunto de ferramentas. E simples, previsivel
e suficiente quando o dominio é focado.

« Time (Team): vérios agentes com instrucées e ferramentas especificas, mais um lider que
organiza o fluxo.

Quando usar Time:

« Muitas capacidades heterogéneas (pesquisa web, calculo, banco de dados, visao, etc.).
+ Necessidade de paralelismo ou separacao de responsabilidades (ex.: pesquisador vs. analista).
« Vocé quer tornar explicita a decis3o de quem deve atuar em cada etapa.

Quando preferir Agente Unico:

« Problema estreito, poucas ferramentas.
« Laténcia/custo e complexidade de coordenacdo nao compensam.

Estrutura Basica de um Time

Um Team funciona como um orquestrador:

Lider (opcional, mas recomendado): decide quem faz o qué (roteia/coordena/sintetiza).
Membros: agentes especializados em partes do problema.
Modo de trabalho: route, coordinateoucollaborate.

> w e

Ferramentas por agente: cada membro vé apenas o que precisa.

Exemplo Pratico

Vamos construir um time no modo Route para rotear por idioma. O lider detecta o idioma da pergunta
e encaminha ao membro correto (inglés, francés ou chinés). Caso o idioma nao seja suportado, usamos
fallback parainglés.

Asimov Academy 44

Criando Agentes com Agno

from agno.agent import Agent

from agno.models.deepseek import DeepSeek

from agno.models.mistral.mistral import MistralChat
from agno.models.openai import OpenAIChat

from agno.team.team import Team

english_agent = Agent(

name="English Agent",
role="You only answer in English",
model=0penAIChat(id="gpt-40"),

french_agent = Agent(

name="French Agent",
role="You can only answer in French",
model=0penAIChat(id="gpt-40"),

multi_language_team = Team(

—

if

name="Multi Language Team",
mode="route",
model=0penAIChat("gpt-40"),
members=[english_agent, french_agent],
show_tool_calls=True,
markdown=True,
description="You are a language router that directs questions to the appropriate language
agent.",
instructions=[
"Identify the language of the user's question and direct it to the appropriate
language agent.",

"If the user asks in a language whose agent is not a team member, respond in English
with:",

"'T can only answer in the following languages: English, French. Please ask your
question in one of these languages.'",

"Always check the language of the user's input before routing to an agent.",
"For unsupported languages like Italian, respond in English with the above message.",

1,

show_members_responses=True,

__name__ == "__main__":

Ask "How are you?" in all supported languages
multi_language_team.print_response('"Comment allez-vous?", stream=True) # French
multi_language_team.print_response("How are you?", stream=True) # English
multi_language_team.print_response("Come stai?", stream=True) # Italian

Asimov Academy

45

Criando Agentes com Agno

Entendendo o cédigo

« Membros especializados (agent_en, agent_fr, agent_zh): cada um com instrugdes que
fixam o idioma de saida.

« Lider (router): recebe a pergunta, decide o destino e aplica fallback quando necessario.

« xxTeam(...)**: instancia o time, define mode="route" e permite exibir respostas dos
membros com show_member_responses=True durante testes.

Como Funciona na Pratica

O usudrio envia uma pergunta em um idioma suportado.
O lider detecta o idioma e encaminha ao membro correspondente.
O membro gera a resposta ja no idioma correto.

> wn e

Se o idioma ndo for suportado, o lider responde em inglés pedindo que o usuario use um idioma
suportado (comportamento de fallback que vocé pode personalizar).

Variagoes de Modo de Trabalho

Além de route, vocé pode adotar:

« xxcoordinatexx**(Coordenacdo): o lider quebra atarefa** em subtarefas, solicita respostas
aos membros e depois sintetiza um resultado tnico.

pesquisador = Agent(...)
analista = Agent(...)
coordenador = Agent(...)

team = Team(
model=0OpenAIChat(id="gpt-40-mini"),
members=[pesquisador, analista],
leader=coordenador,
mode="coordinate",

)

print(team.run("Qual o impacto de juros altos no valuation?"))

« xxcollaboratexx** (Colaboracdo): todos os membros trabalham em paralelo** sobre a
mesma entrada (ex.: ideagdo, avaliagdo e planejamento) e o lider sintetiza.
ideacao = Agent(...)
avaliacao = Agent(...)

planejamento = Agent(...)
lider = Agent(...)

team = Team(

Asimov Academy 46

Criando Agentes com Agno

model=0penAIChat(id="gpt-40-mini"),
members=[ideacao, avaliacao, planejamento],
leader=1l1ider,
mode="collaborate",

)

print(team.run("Como lancar um curso de data science em 90 dias?"))

Possibilidades

Assistentes compostos: pesquisador (web) + analista (calculo) + redator (sintese).
« Roteamento por competéncia: times por idioma, por dominio (juridico, financeiro) ou por tipo
de entrada (texto, imagem, planilha).

Pipelines de decisdo: detecgdo - analise - verificacdo - relatorio.

Paralelismo criativo: geracdo de ideias em paralelo seguida de votagdo/sintese.

Conclusao

Times no Agno sdo Uteis quando ha especializages claras e a coordenacg@o agrega valor real. Comece
simples (um agente Gnico bem instruido) e evolua para Teams quando surgirem limita¢Ges de rotea-
mento, manutencao de prompts ou necessidade de paralelismo. Defina papéis com clareza, delimite
ferramentas por agente e use logs/observabilidade para depurar a colaboracao.

Asimov Academy 47

	01. O que o Agno tem de especial?
	Funcionalidades e diferenciais do Agno
	Exemplo prático
	Conclusão

	02. O que são agentes de IA?
	O que define um agente de IA?
	O papel das ferramentas nos agentes
	Definição de agente de IA
	Conclusão

	03. Como um agente executa tarefas?
	Limitação dos modelos de linguagem
	O papel do framework na execução
	Exemplo prático

	Conclusão

	04. Agno ou LangChain?
	Comparando Agno e LangChain
	Pontos-chave:

	Qual escolher?
	Conclusão

	05. Configurando o Agno
	Por que usar o Agno com o Yuvi?
	Instalação do Yuvi
	Criando o ambiente virtual

	Instalando o Agno
	Criando o primeiro script
	Conectando-se à Groq
	Etapas para usar:
	Carregando variáveis do .env

	Executando o código
	Entendendo a resposta

	Conclusão

	06. Criando nosso primeiro Agente
	Por que usar a classe Agent
	Criando um agente pesquisador com Tavily
	Instalação da ferramenta Tavily
	Código do agente

	Criando um agente analista financeiro com Yahoo Finance
	Código do agente

	Explorando outras possibilidades

	07. Criando nossas próprias tools
	Introdução à Criação de Ferramentas
	Exemplo de Função: Conversão de Celsius para Fahrenheit

	Por que NÃO Funciona Imediatamente?
	Adicionando a Documentação (Docstring)
	Automatizando o Processo com Ferramentas de Desenvolvimento

	Exemplo de Uso no Agno
	Possíveis Erros e Melhorias

	Conclusão

	08. Usando ChatGPT via API
	Conectando-se a um Modelo da OpenAI
	Entendendo a Precificação

	Alterando o Modelo no Agno
	Explicação Detalhada

	09. Agno Playground
	Introdução ao Agno Playground
	Como Configurar o Agno Playground
	Instalando Dependências Necessárias

	Testando o Agno Playground
	Funcionalidades do Agno Playground
	Histórico de Sessões
	Visualização de Chamadas de Função
	Documentação e Customização
	Teste de Funções no Agente

	Histórico Detalhado e Sessões de Agentes
	Problemas Comuns

	Conclusão

	10. Memória e Storage no Agno
	Introdução à Memória Temporária
	Parâmetros addHistoryToMessages e numHistoryRuns

	Limitações da Memória Temporária
	Armazenamento Persistente com Storage
	Exemplo com SQLiteStorage
	Instalando Dependências
	Testando o Storage

	Outras Opções de Storage
	Conclusão

	11. Adicionando Conhecimento Externo ao Agente com RAG
	Introdução à Classe Knowledge
	Exemplo Prático com PDF
	Estrutura do Projeto
	Criando a Base de Conhecimento
	O Papel do VectorDB e Embeddings
	Integrando ao Agente
	Testando o Agente

	Outras Fontes de Conhecimento
	Conclusão

	12. Trabalhando com Memória no Agno
	Diferença entre Memória e Storage
	Estrutura Básica da Memória
	Exemplo Prático
	Entendendo o código
	Configurando a memória (modelo + banco)
	Construindo o agente

	Como Funciona na Prática
	Possibilidades
	Conclusão

	13. Sistemas Multiagentes (Teams) no Agno
	Diferença entre Time e Agente Único
	Estrutura Básica de um Time
	Exemplo Prático
	Entendendo o código

	Como Funciona na Prática
	Variações de Modo de Trabalho
	Possibilidades
	Conclusão

