
23/04/2020 Spring MVC I: Aula 10 - Atividade 4 Mãos na massa: URLs amigáveis | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/spring-mvc-1-criando-aplicacoes-web/task/40599 1/3

 04
Mãos na massa: URLs amigáveis

Chegou a hora de você pôr em prática o que foi visto na aula. Para isso, execute os passos listados abaixo.

1) Se você ainda não baixou, faça agora o download do código fonte da página JSP aqui

(https://s3.amazonaws.com/caelum-online-public/spring-mvc-1-criando-aplicacoes-web/springmvc-arquivos-extras-

aula10.zip). Após baixar, extraia o ZIP. Você encontrará dois arquivos JSP e uma pasta com os recursos CSS:

O arquivo JSP limpo mas sem expression languages (detalhe-limpo.jsp).

O arquivo JSP �nalizado com todas as alterações já aplicadas nessa aula (detalhe-pronto.jsp).

Uma pasta resources, com os arquivos CSS e imagem da Casa do Código para adicionar no projeto localmente.

2) Escolha qual JSP usar, renomeie-o para detalhe.jsp e copie-o para a pasta src/main/webapp/WEB-INF/views/produtos

do seu projeto:

3) Se você usou o arquivo detalhe-limpo.jsp, ainda é preciso incluir as expression languages nos lugares indicados.

Lembre-se de alterar os locais onde deseja que as informações de título, id, descrição, número de páginas, sumário,

data de lançamento, além do <c:forEach /> para listar os preços do livro:

<form action="/carrinho/add" method="post" class="container">
 <input type="hidden" value="${produto.id}" name="produtoId" >
 <ul id="variants" class="clearfix">
 <c:forEach items="${produto.precos}" var="preco">
 <li class="buy-option">
 <input type="radio" name="tipoPreco" class="variant-radio"
 id="tipoPreco" value="${preco.tipo}" checked="checked" />
 <label class="variant-label" >${preco.tipo}</label>
 <small class="compare-at-price">R$ 39,90</small>
 <p class="variant-price">${preco.valor}</p>

 </c:forEach>

 <button type="submit" class="submit-image icon-basket-alt"
 title="Compre Agora ${produto.titulo}"></button>
</form>

https://s3.amazonaws.com/caelum-online-public/spring-mvc-1-criando-aplicacoes-web/springmvc-arquivos-extras-aula10.zip

23/04/2020 Spring MVC I: Aula 10 - Atividade 4 Mãos na massa: URLs amigáveis | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/spring-mvc-1-criando-aplicacoes-web/task/40599 2/3

4) Agora, copie toda a pasta resources para a pasta src/main/webapp do seu projeto:

5) Por padrão, o Spring MVC nega o acesso à pasta resources. Consequentemente, o Tomcat não pode carregar os

arquivos CSS (e a página �ca sem design). Para liberar o acesso, é preciso fazer duas alterações na classe

AppWebConfiguration :

A classe deve estender a classe WebMvcConfigurerAdapter :

@EnableWebMvc
@ComponentScan(basePackageClasses= {HomeController.class, ProdutoDAO.class,
 FileSaver.class})
public class AppWebConfiguration extends WebMvcConfigurerAdapter {

 // restante do código omitido

}

A classe deve implementar o método configureDefaultServletHandling para liberar o acesso:

@Override
public void configureDefaultServletHandling(DefaultServletHandlerConfigurer configurer) {
 configurer.enable();
}

6) Ajuste o código Java começando pelo ProdutoDAO . Escreva um novo método, chamado find , que recebe o id do

produto por parâmetro e retorna o produto com todas as informações preenchidas, inclusive os preços. O método deve

executar uma query planejada através do EntityManager , que vai realizar o join entre as tabelas Produto e precos :

public Produto find(Integer id) {
 return manager.createQuery("select distinct(p) from Produto p " +
 "join fetch p.precos precos where p.id = :id", Produto.class)
 .setParameter("id", id).getSingleResult();
}

7) Ajuste o controller, para carregar a JSP com os dados do produto. Primeiramente, crie o método detalhe , que recebe

o id do produto por parâmetro, retorna para a JSP de detalhe e carrega o objeto ModelAndView com um produto:

@RequestMapping("/detalhe")
public ModelAndView detalhe(Integer id){

23/04/2020 Spring MVC I: Aula 10 - Atividade 4 Mãos na massa: URLs amigáveis | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/spring-mvc-1-criando-aplicacoes-web/task/40599 3/3

 ModelAndView modelAndView = new ModelAndView("produtos/detalhe");
 Produto produto = produtoDao.find(id);
 modelAndView.addObject("produto", produto);

 return modelAndView;
}

8) O Spring já traz um sistema de URLs amigáveis, que são URLs que parecem texto e não �cam poluídas com ? e & .

Então edite o método detalhe , adicionando uma variável na rota e usando a anotação @PathVariable para mapear essa

variável a um parâmetro:

@RequestMapping("/detalhe/{id}")
public ModelAndView detalhe(@PathVariable("id") Integer id){

 ModelAndView modelAndView = new ModelAndView("/produtos/detalhe");
 Produto produto = produtoDao.find(id);
 modelAndView.addObject("produto", produto);

 return modelAndView;
}

9) Por �m, adicione um link na listagem de produtos (lista.jsp) que irá te direcionar para a página de detalhe do

produto. Para construir a URL, use o método mvcUrl . Além disso, invoque o método arg para adicionar um parâmetro

à URL. Portanto, o link vai �car com a seguinte estrutura:

<c:forEach items="${produtos}" var="produto">
 <tr>
 <td>

 ${produto.titulo}

 </td>
 <td>${produto.descricao}</td>
 <td>${produto.paginas}</td>
 </tr>
</c:forEach>

Lembre-se que é preciso fazer o import da taglib para poder usar o mvcUrl :

<%@ taglib uri="http://www.springframework.org/tags" prefix="s"%>

