23/04/2020 Spring MVC I: Aula 10 - Atividade 4 M&os na massa: URLs amigaveis | Alura - Cursos online de tecnologia

O o4
Maos na massa: URLs amigaveis

Chegou a hora de vocé por em pratica o que foi visto na aula. Para isso, execute os passos listados abaixo.

1) Se vocé ainda n#o baixou, faca agora o download do cddigo fonte da pagina JSP aqui
(https://s3.amazonaws.com/caelum-online-public/spring-mvc-1-criando-aplicacoes-web/springmvc-arquivos-extras-

aulal0.zip). Apds baixar, extraia o ZIP. Vocé encontrara dois arquivos JSP e uma pasta com os recursos CSS:

¢ O arquivo JSP limpo mas sem expression languages (detalhe-limpo.jsp).
e O arquivo JSP finalizado com todas as altera¢des ja aplicadas nessa aula (detalhe-pronto.jsp).

o Uma pasta resources, com os arquivos CSS e imagem da Casa do Cédigo para adicionar no projeto localmente.

2) Escolha qual JSP usar, renomeie-o para detalhe.jsp e copie-o para a pasta src/main/webapp/WEB-INF/views/produtos

do seu projeto:

v Ecasadocodigo
¥ (8 src/main/java
(8 src/mainfresources
(8 srftestfjava
(#8 srftest/resources
P = JRE System Library [JavaSE-1.8]
b =, Maven Dependencies
¥ [=-src
¥ (= main
¥ [=-webapp
» (= arquivos-sumario
¥ (= resources
P (=css
» (= imagens
¥ = WEB-INF

B detalhe.jsp

B form.jsp

lista.jsp
ok.jsp
home.jsp

|=| messages.properties

[=-test

3) Se vocé usou o arquivo detalhe-limpo.jsp, ainda é preciso incluir as expression languages nos lugares indicados.
Lembre-se de alterar os locais onde deseja que as informagdes de titulo, id, descri¢do, nimero de paginas, sumario,

data de lancamento, além do <c:forEach /> para listar os pregos do livro:

<form action="/carrinho/add" method="post" class="container">
<input type="hidden" value="${produto.id}" name="produtoId" >
<ul id="variants" class="clearfix">
<c:forEach items="${produto.precos}" var="preco">
<li class="buy-option">
<input type="radio" name="tipoPreco" class="variant-radio"
id="tipoPreco" value="${preco.tipo}" checked="checked" />
<label class="variant-label" >${preco.tipo}</label>
<small class="compare-at-price">R$ 39,90</small>
<p class="variant-price">${preco.valor}</p>
</1i>
</c:forEach>

<button type="submit" class="submit-image icon-basket-alt"
title="Compre Agora ${produto.titulo}"></button>
</form>

https://cursos.alura.com.br/course/spring-mvc-1-criando-aplicacoes-web/task/40599 1/3

https://s3.amazonaws.com/caelum-online-public/spring-mvc-1-criando-aplicacoes-web/springmvc-arquivos-extras-aula10.zip

23/04/2020 Spring MVC I: Aula 10 - Atividade 4 M&os na massa: URLs amigaveis | Alura - Cursos online de tecnologia

4) Agora, copie toda a pasta resources para a pasta src/main/webapp do seu projeto:

¥ (=% casadocodigo
b (2 src/mainfjava
([src/mainfresources
(8 sreftestfjava
(*8 srcftestfresources
P m, JRE System Library [JavaSE-1.8]
b m)\ Maven Dependencies
¥ (= src
¥ (= main
¥ [=>webapp
b (= arquivos-sumario
¥ B resources
B [=css
¥ (= imagens
» L WEB-INF
[=-test

5) Por padrio, o Spring MVC nega o acesso a pasta resources. Consequentemente, o Tomcat néo pode carregar os
arquivos CSS (e a pagina fica sem design). Para liberar o acesso, é preciso fazer duas alteracdes na classe

AppWebConfiguration :

e A classe deve estender a classe WebMvcConfigurerAdapter :

@EnableWebMvc

@ComponentScan(basePackageClasses= {HomeController.class, ProdutoDAO.class,
FileSaver.class})

public class AppWebConfiguration extends WebMvcConfigurerAdapter {

// restante do cdédigo omitido

o A classe deve implementar o método configureDefaultServletHandling para liberar o acesso:

@Override
public void configureDefaultServletHandling(DefaultServletHandlerConfigurer configurer) {
configurer.enable();

6) Ajuste o codigo Java comecando pelo ProdutobDAO . Escreva um novo método, chamado find , que recebe o id do
produto por parametro e retorna o produto com todas as informagdes preenchidas, inclusive os pregos. O método deve

executar uma query planejada através do EntityManager , que vai realizar o join entre as tabelas Produto e precos :

public Produto find(Integer id) {
return manager.createQuery("select distinct(p) from Produto p " +
"join fetch p.precos precos where p.id = :id", Produto.class)
.setParameter("id", id).getSingleResult();

7) Ajuste o controller, para carregar a JSP com os dados do produto. Primeiramente, crie o método detalhe , que recebe

o id do produto por parametro, retorna para a JSP de detalhe e carrega o objeto ModelAndview com um produto:

@RequestMapping("/detalhe")
public ModelAndView detalhe(Integer id){

https://cursos.alura.com.br/course/spring-mvc-1-criando-aplicacoes-web/task/40599

2/3

23/04/2020 Spring MVC I: Aula 10 - Atividade 4 M&os na massa: URLs amigaveis | Alura - Cursos online de tecnologia

ModelAndView modelAndView = new ModelAndView("produtos/detalhe");
Produto produto = produtoDao.find(id);
modelAndView.addObject("produto", produto);

return modelAndView;

8) O Spring ja traz um sistema de URLs amigaveis, que sdo URLs que parecem texto e ndo ficam poluidas com ? e &.

Entfo edite o método detalhe , adicionando uma variavel na rota e usando a anota¢o @Pathvariable para mapear essa

varidvel a um parametro:
@RequestMapping("/detalhe/{id}")
public ModelAndView detalhe(@PathVariable("id") Integer id){
ModelAndView modelAndView = new ModelAndView("/produtos/detalhe");
Produto produto = produtoDao.find(id);

modelAndView.addObject("produto”, produto);

return modelAndView;

9) Por fim, adicione um link na listagem de produtos (lista.jsp) que ira te direcionar para a pagina de detalhe do
produto. Para construir a URL, use o método mvcurl . Além disso, invoque o método arg para adicionar um pardmetro

a URL. Portanto, o link vai ficar com a seguinte estrutura:

<c:forEach items="${produtos}" var="produto">

<tr>
<td>

${produto.titulo}

</td>

<td>${produto.descricao}</td>
<td>${produto.paginas}</td>
</tr>
</c:forEach>

Lembre-se que é preciso fazer o import da taglib para poder usar o mvcurl :

<%@ taglib uri="http://www.springframework.org/tags" prefix="s"%>

https://cursos.alura.com.br/course/spring-mvc-1-criando-aplicacoes-web/task/40599 3/3

