CREATE QUESTION ENDPOINT

In this lesson we are going to see how to crate Api endpoint for creating question and how to
properly test it in postman. Alright let's go ahead and open up our terminal. And create a

new branch to isolate our work foday:

git checkout -b lesson-48

CREATING API ENDPOINT

1. Define Api Resource Route

Now Let's go ahead and open up our api.php in routes directory. Then inside this file
instead of define a post route for creating our question, let's define a resource route api by
saying Route::apiResource . SO by doing this way we no longer need to define new routes
when we working with other endpoints such as update or delete question.

Also note that the apiResource does almost the same thing with what Route::resrouce
does, but it exclude the edit and create actions.

In the first argument let's specify /question , and in the second argument it will refer to

Api\QuestionsController .

Since we've adlready defined the index route in the previous lesson, so we need to exclude it
in our route by chain in our route definition with except mMmethod and put the index onit.

So here our Api resource route look like:

// routes/api.php
Route: :apiResource('/questions', 'Apil\QuestionsController')-
>except('index');

You can save the change and then verify your routes in your terminal.

zsh

php artisan route:list ——path=api 10:12:55
| Name | Action

GET|HEAD api/questions | App\Http\Controllers\Api\QuestionsController@index api

POST api/questions | questions.store App\Http\Controllers\Api\QuestionsController@store api,auth:api
GET |HEAD api/questions/{question} | questions.show App\Http\Controllers\Api\QuestionsController@show api,auth:api
PUT|PATCH | api/questions/{question} | questions.update App\Http\Controllers\Api\QuestionsController@update api,auth:api
DELETE api/questions/{question} | questions.destroy | App\Http\Controllers\Api\QuestionsController@destroy | api,auth:api
POST api/token | App\Http\Controllers\Auth\LoginController@getToken api,guest
GET|HEAD api/user | Closure api,auth:api

) [lesson-48 e 4 |

2. Protect our api resource in middleware auth:api

Now we need to protect our question api resource route to be accessible only by
authenticated user. In order to do that we can wrap it in middleware auth:api like this:

// routes/api.php
Route::middleware(['auth:api'])->group(function() {

Route: :apiResource('/questions', 'ApilQuestionsController')-
>except('index');

)

3.The store method

Alright, now let's open up our old gQuestionsController . Inside that file let's go ahead and
copy the store method.

Let's open up our QuestionsController inside api folder. Inside this file let's replace store

method with the code that we grabbed from our old QuestionsController .

Instead of returning a view we are going to refurn a json response contains a message that

we can grab from the view.

// Api/QuestionsController.php
public function store(AskQuestionRequest S$request)
{
Srequest->user()->questions()->create(S$request->only('title’,
‘body ")) ;

return response()->json(|
'message'’ => "Your question has been submitted",

1)

Let's also return the newly created question in our json response. Since eloquent create

method will retfurn new object, we can assign it into a variable.

Squestion = $request->user()->questions()->create(Srequest-
>only('title', 'body'));

Then inside the array of our json response we can add question as array key. For the value

we can instantiate the QuestionResource and passthe question oObject toit.

// Api/QuestionsController.php
public function store(AskQuestionRequest S$request)

{

Squestion = S$request->user()->questions()->create(Srequest-
>only('title', 'body'));

return response()->json(|
'message' => "Your question has been submitted",
'question' => new QuestionResource($question)

1)

Don't forget to import the askQuestionRequest namespace at the top of the file.
use App\Http\Requests\AskQuestionRequest;

Alright, let's save all these changes and then test our brand new endpoint in our postman.

TEST OUR API ENDPOINT IN POSTMAN

1. Define a new request

In Postman let's duplicate our pisplay all questions testrequest.

- Laravel QA RESTful API

2 requests
F
v M Questions see T
(
GET Display all questions i

Get Token . OpeninNewTab

A] Rename 38E
R
& Edit
[@ Duplicate 38D
m Delete &
We can then rename it 0s Create Question .
v B Laravel QA RESTful API
3 requests
F
v Im Questions see T
(
GET Display all questions
GET Display all questions Copy eee
GetToken B Open in New Tab
R
A] Rename 3%E
& Edit
[@ Duplicate €D
M Delete &

In the right side we can change the HTIP verb to be postT , the request url is going to be the
same, so we don't need to make any change on it. Let's go to Headers section and specify
some headers. Firstly, let's add accept in the Key column while application/json in the
value.

Get Token GET Display all questions Create Question o
» Create Question
POST v http://localhost:8000/api/questions
Params Authorization Headers (1) Body Pre-request Script Tests Settings

v Headers (1)

KEY

Accept

Key

VALUE
application/json

Value

Second, we let's specify the authorization in the key column because remember we have

put our route in auth:api mMiddleware.

For the value let's grab that from Get Token request. Let's reopen the get token request. Hit
the send button, and copy the access token 's value.

No Environment vy © ¥
Get Token X GET Display all questions Create Question ° + oo
POST v http://localhost:8000/api/token m Save v
Params Authorization Headers (9) Body @ Pre-request Script Tests Settings Cookies Code Comments (0)
Query Params
KEY VALUE DESCRIPTION ees Bulk Edit
Key Value Description

Body Cookies Headers (11)

Test Results

Status: 200 0K Time: 948ms

Size: 2.17 KB Save Response v

Pretty Raw Preview Visualize BETA JSON ~ 5 Ii Q
1 A
2 "token_type": "Bearer",
3 "expires_in": 31622400,
4

"access_token":
"'eyJ0eXAi0iJKV1QiLCIhbGci01JSUZIINIiIsImp@aSI6ImU20WRhN] L10Td INWRjNmEZZGI2NjBKOTE2N V] Y2QyNjBiINTFiMjQzNmNiZDE2ZjR
mM2IyMjI3MzI1ZmZiM2Z1YzkzZWIiYmYyYzc1YWUyIn@.
eyJhdWQiOiIyIiwianRpIjoiZTY5ZGE20WUSN2U1ZGM2YTNKYjY2MGQSMTY2NWNj ZDI2MGIIMWIyNDM2Y2IKMTZmNGYzYj IyMj czMjVmZmIzZmVj
O0TN1YmJiZjJjNzVhZTIiLCIpYXQi0jEINjg4NjMyODASIm5iZiI6MTU20Dg2MzI4MCwiZXhwI joxNjAwWNDgINjgwlCIzdWIi0iIxTiwic2NveGVz
IjpbXXxe.
CM2y-sbwf510-3BW7XgreGgAscby8XjqreXfyMgad9aCj75ETPXQ9KMd9xPXEEORbAWHrgualTCcUrbokanVBilZvEmX6KLVrE4YHcsIEngqIXJ1w
Kn3VwBp6nC4-yqGxKhYbUFLYG5x7UHDI2J fgIvH-81r77rUQcYIbz9hyd]jzXSAxiu5gfa-u8w_BB8T3hqibPOdp6XfMBozK_cjcIPsQwWvcgIELT
0YS8cux1FcqAVCTosGbUxcIYCdkkcWxjXPTZut j zQZW_GsguX3tjuuilWaiPzkKZLk3S6d8Kc151QYLURsXqBqsXquExakzk-ekqljaXyKbGnPan
ZNw_bW4VUyAuyI6CinNDRRatK90k3R26xWz4YT11RvxZh3FyJ77tIcOUXBZfboKof1qR3PHIgCcxGZ6NYJc2EsUeWmYYvRNa3TiPUBVEKs3n5yUbg
QZtqkVV1iwj f_YUrrWYwHqqJ1b97CZkbXIB6iNSRtV6vjVOEAV3HpoEJ9pT6DBNSXCCkfGQcmBaelKAt 1laGg8EYOtYNLzbSsb6WuBkwIdc@31IbVa
ZrbJBgkH2j srlmoESXn67V4tmyG3VUIGy04U0th8RbW12MqPHL52J8KpES jVxgB1BgEPOBVHtVy6pu@n9CUGUws fg_dRQAII2DvD6ESA55z ImxkGo
ag9P_uGTemyY"',

Now, we can go head back to create question request. And for the Authorization''s

value we can specify Bearer . Add a space and paste our access token.

No Environment vy © ¥
Get Token GET Display all questions Create Question [] + e

» Create Question Examples (0)

POST v http://localhost:8000/api/questions “ Save ~

Headers (2) Cookies Code Comments (0)

v Headers (2)

KEY VALUE DESCRIPTION ees BulkEdit Presets v
Accept application/json
Authorization Bearer

ey]0eXAiOiJKV1QiLCJhbGciOijSUzI 1Nilsimp0aSI6ImU
20WRhN;jIIOTdINWR|NMEzZGI2NjBKOTE2N}VjY2Qy

NjBINTFiMjQzNmNIZDE2ZjRmM21lyM;jI3MzI1ZmZiM2

Response ZIYzkzZW)iYmYyYzc1YWUyIn0.eylhdWQIiOilyliwianRp
1JoiZTY5ZGE20WUSN2U1ZGM2YTNKY]Y2MGQSMTY

2. Test the Create Question request

Now if we hit the send bufton, we'll get validation errors which is a good sign.

{
"message": "The given data was invalid.",
"errors": {
"title": [
"The title field is required."
1,
"body": [
"The body field is required."
1
}
}

Now we can go to Body section. Choose the raw option and make sure you choose the
JsoN type. And then define the title and body of the question.

No Environment vy o ¥
Get Token GET Display all questions Create Question [] + e

» Create Question Examples (0)

POST v http://localhost:8000/api/questions “ Save ~

(10) Body @ Cookies Code Comments (0)

none form-data x-www-form-urlencoded ® raw binary GraphQL BETA JSON ~ Beautify
1+ |{
2 "title": "this is my other question”,
3 "body": "Hi there, this is my anohter question"
EOS |

If we hit the send bufton one more time. We'll have expected response which contains
message and our newly created question.

No Environment v o ¥
Get Token GET Display all questions Create Question ° +

POST v http://localhost:8000/api/questions “ Save ¥

2 "title": "this is my other question”,
3 "body": "Hi there, this is my anohter question"
= ¥
Body (10) Status: 2000K Time: 132ms Size: 758 B Save Response v
Pretty ‘ ‘ BETA 5ON v = m Q
1A
2 "message': "Your question has been submitted",
3 "question": {
4 "id": 10,
5 "title": "this is my other question",
6 "slug": "this-is-my-other-question", N
7 "votes_count": null,
8 "answers_count": null,
9 "views": null,
10 "status": "unanswered",
11 "excerpt": "Hi there, this is my anohter question",
12 "created_date": "1 second ago",
13 "user": {
14 "id": 1,
15 "url": "#",
16 "name": "Paige McCullough",
17 "avatar": "https://www.gravatar.com/avatar/cc77@0b522cebaca421@aa50ce3c3b902?s=32"
18 }
19 1

SUMMARY

In this lesson, we looked at how we can create api endpoint for adding new question. We've
learned how to use apiResource to define resource api easily. And we've also leaned how
to hit our protected api endpoint by manually attach the access token to the request
header.

Now Let's move on to the next lesson and see how to create api endpoints for updating and
deleting question.

Don't forget fo me commit all changes into your git repo:

git add .
git commit -m "Create an endpoint to create question"
git push origin lesson-48

	Create Question Endpoint
	creating Api endpoint
	Test Our API Endpoint in postman
	Summary

