
CREATE QUESTION ENDPOINT

In this lesson we are going to see how to crate Api endpoint for creating question and how to
properly test it in postman. Alright let's go ahead and open up our terminal. And create a
new branch to isolate our work today:

CREATING API ENDPOINT

1. Define Api Resource Route

Now Let's go ahead and open up our api.php in routes directory. Then inside this file
instead of define a post route for creating our question, let's define a resource route api by
saying Route::apiResource . So by doing this way we no longer need to define new routes
when we working with other endpoints such as update or delete question.

Also note that the apiResource does almost the same thing with what Route::resrouce

does, but it exclude the edit and create actions.

In the first argument let's specify /question , and in the second argument it will refer to
Api\QuestionsController .

Since we've already defined the index route in the previous lesson, so we need to exclude it
in our route by chain in our route definition with except method and put the index on it.

So here our Api resource route look like:

You can save the change and then verify your routes in your terminal.

git checkout -b lesson-48

// routes/api.php
Route::apiResource('/questions', 'Api\QuestionsController')-
>except('index');

2. Protect our api resource in middleware auth:api

Now we need to protect our question api resource route to be accessible only by
authenticated user. In order to do that we can wrap it in middleware auth:api like this:

3. The store method

Alright, now let's open up our old QuestionsController . Inside that file let's go ahead and
copy the store method.

Let's open up our QuestionsController inside Api folder. Inside this file let's replace store
method with the code that we grabbed from our old QuestionsController .

Instead of returning a view we are going to return a json response contains a message that
we can grab from the view.

// routes/api.php
Route::middleware(['auth:api'])->group(function() {
 Route::apiResource('/questions', 'Api\QuestionsController')-
>except('index');
});

// Api/QuestionsController.php
public function store(AskQuestionRequest $request)
{
 $request->user()->questions()->create($request->only('title',
'body'));

 return response()->json([
 'message' => "Your question has been submitted",
]);
}

Let's also return the newly created question in our json response. Since eloquent create

method will return new object, we can assign it into a variable.

Then inside the array of our json response we can add question as array key. For the value
we can instantiate the QuestionResource and pass the question object to it.

Don't forget to import the AskQuestionRequest namespace at the top of the file.

Alright, let's save all these changes and then test our brand new endpoint in our postman.

TEST OUR API ENDPOINT IN POSTMAN

1. Define a new request

In Postman let's duplicate our Display all questions test request.

$question = $request->user()->questions()->create($request-
>only('title', 'body'));

// Api/QuestionsController.php
public function store(AskQuestionRequest $request)
{
 $question = $request->user()->questions()->create($request-
>only('title', 'body'));

 return response()->json([
 'message' => "Your question has been submitted",
 'question' => new QuestionResource($question)
]);
}

use App\Http\Requests\AskQuestionRequest;

We can then rename it as Create Question .

In the right side we can change the HTTP verb to be POST , the request url is going to be the
same, so we don't need to make any change on it. Let's go to Headers section and specify
some headers. Firstly, let's add Accept in the Key column while Application/json in the
value.

Second, we let's specify the Authorization in the key column because remember we have
put our route in auth:api middleware.

For the value let's grab that from Get Token request. Let's reopen the get token request. Hit
the Send button, and copy the access_token 's value.

Now, we can go head back to Create question request. And for the Authorization 's
value we can specify Bearer . Add a space and paste our access token.

2. Test the Create Question request

Now if we hit the Send button, we'll get validation errors which is a good sign.

Now we can go to Body section. Choose the raw option and make sure you choose the
JSON type. And then define the title and body of the question.

If we hit the send button one more time. We'll have expected response which contains
message and our newly created question.

{
 "message": "The given data was invalid.",
 "errors": {
 "title": [
 "The title field is required."
],
 "body": [
 "The body field is required."
]
 }
}

SUMMARY

In this lesson, we looked at how we can create api endpoint for adding new question. We've
learned how to use apiResource to define resource api easily. And we've also leaned how
to hit our protected api endpoint by manually attach the access token to the request
header.

Now Let's move on to the next lesson and see how to create api endpoints for updating and
deleting question.

Don't forget to me commit all changes into your git repo:

git add .
git commit -m "Create an endpoint to create question"
git push origin lesson-48

	Create Question Endpoint
	creating Api endpoint
	Test Our API Endpoint in postman
	Summary

