02/12/2019 ASP.NET Core parte 1: Aula 5 - Atividade 1 BaseRepository | Alura - Cursos online de tecnologia

& o
BaseRepository

Transcricdo

Comecando deste ponto? No link a seguir, vocé pode fazer o DOWNLOAD completo do projeto (https://github.com/alura-
cursos/ASPNETCore20/archive/2b7ce47a897e36bed019548fa7169a249fa779c4.zip) para continuar seus estudos a partir

deste capitulo.

Nossa aplicagdo esta funcionando e, aparentemente, o catdlogo estd correto, mas se olharmos nossa tabela de produtos
( dbo.Produto ), perceberemos que os produtos sdo importados e duplicados no banco de dados. Isto é, o arquivo

livros.json éimportado repetidas vezes, cada vez que subimos o servidor.

Colocaremos um filtro no nosso repositdrio de produtos para fazermos uma tnica importacdo. Assim, caso o produto ja
exista, ele serd ignorado. Vamos abrir ProdutoRepository.cs e pegar o método SaveProdutos() , no qual incluiremos o filtro

para evitar a duplicacgdo.

Caso o produto néo exista, faremos a importagdo do mesmo, a partir do Dbset, naquele conjunto de entidades mantido pelo
Entity Framework, equivalente a uma tabela e representado pelo contexto.Set<Produto>() , 0 qual colocaremos dentro da

condicdo if .

Faremos uma consulta para verificar se um produto com o cddigo que estd sendo importado existe ou ndo, com a clausula do
LINQ where() , que utilizara uma expressdo lambda. p.Codigo tera que seriguala livro.Codigo , e esta expressdo retornard

os elementos que tém o mesmo cédigo do livro que esta sendo importado.

E, entdo, chamaremos um método ( Any() ), que retornara verdadeiro ou falso, verdadeiro somente se o produto for
encontrado. Caso este no seja encontrado, executaremos o cddigo da linha que fard a importacao deste produto, que

moveremos para cima.

public void SaveProdutos(List<Livro> livros)

{
foreach (var livro in livros)
{
if (!contexto.Set<Produto>().Where(p => p.Codigo == livro.Codigo).Any())
{
contexto.Set<Produto>().Add(new Produto(livro.Codigo, livro.Nome, livro.Preco));
}
}
contexto.SaveChanges();
¥

Aproveitando que estamos no repositério, vamos eliminar as duplicacdes da expressio contexto.Set<Produto>() . Paraisso,

extrairemos uma variavel local com "Ctrl +.", selecionando a op¢éo "Introduzir local para "contexto.Set()"™.

Com isso, serd criado um dbSet , uma variavel local que representa o DbSet de Produto . No entanto, queremos criar um

campo para ser reutilizado durante o tempo de vida desta classe.

foreach (var livro in livros)
‘

https://cursos.alura.com.br/course/webapp-com-aspnet-core-2/task/37857 1/4


https://github.com/alura-cursos/ASPNETCore20/archive/2b7ce47a897e36bed019548fa7169a249fa779c4.zip

02/12/2019 ASP.NET Core parte 1: Aula 5 - Atividade 1 BaseRepository | Alura - Cursos online de tecnologia

L

Microsoft.EntityFrameworkCore.DbSet<Produto> dbSet = contexto.Set<Produto>();
if (!dbSet.Where(p => p.Codigo == livro.Codigo).Any())
{

contexto.Set<Produto>().Add(new Produto(livro.Codigo, livro.Nome, livro.Preco));

}

contexto.SaveChanges();

Assim, moveremos a linha para cima, e colocaremos 0 DbSet como campo privado:

private readonly ApplicationContext contexto;
private readonly DbSet<Produto> dbSet = contexto.Set<Produto>();

Com isto, temos a declaragdo do dbset , que deixaremos s6, e moveremos a atribuicdo do dbSet , isto é, o trecho dbSet =

contexto.Set<Produto>(); , para baixo, ao construtor, apds o qual poderemos eliminar a atribui¢do da linha de cima:

private readonly ApplicationContext contexto;
private readonly DbSet<Produto> dbSet;

public ProdutoRepository(ApplicationContext contexto)
{

this.contexto = contexto;
dbSet = contexto.Set<Produto>();

Feito isso, substituiremos todos os lugares em que ha contexto.Set<Produto>() pelo campo local dbset , em:

public IList<Produto> GetProdutos()

{
return dbSet.ToList();

Assim como em:

if (!dbSet.Where(p => p.Codigo == livro.Codigo).Any())
{

dbSet.Add(new Produto(livro.Codigo, livro.Nome, livro.Preco));

Em seguida, criaremos uma classe base que ajudara na eliminacao destas duplicacdes de cddigo, para todos os repositdrios a
serem utilizados. Além de ProdutoRepository , usaremos CadastroRepository , PedidoRepository e ItemPedidoRepository .A

classe base serd criada na pasta "Repositories" e se chamara "BaseRepository".

Criaremos esta classe copiando um trecho de c6digo do ProdutoRepository — os dois campos locais, contexto e dbSet .

Também reaproveitaremos o construtor, copiando o trecho correspondente e colando em BaseRepository .

public class BaseRepository

{

private readonly ApplicationContext contexto;

https://cursos.alura.com.br/course/webapp-com-aspnet-core-2/task/37857 2/4



02/12/2019 ASP.NET Core parte 1: Aula 5 - Atividade 1 BaseRepository | Alura - Cursos online de tecnologia
private readonly DbSet<Produto> dbSet;

public ProdutoRepository(ApplicationContext contexto)
{

this.contexto = contexto;
dbSet = contexto.Set<Produto>();

Agora, modificaremos o nome do construtor para BaseRepository , importaremos a referéncia de DbSet e de Produto .
Nossa classe precisara ser genérica, e ndo especifica para Produto , como esta no momento. No lugar de Produto ,

utilizaremos um tipo genérico, um base model, T .

Ele terd que ser uma entidade que herdard do BaseModel , isto é, serd preciso um filtro para o tipo T, com where . Também
teremos que alterar a visibilidade dos campos para deixd-los como protected , pois queremos que eles sejam visiveis por

todas as classes derivadas.

O cédigo ficara da seguinte maneira:

public class BaseRepository<T> where T : BaseModel

{
protected private readonly ApplicationContext contexto;
protected private readonly DbSet<T> dbSet;
public BaseRepository(ApplicationContext contexto)
{
this.contexto = contexto;
dbSet = contexto.Set<T>();
}
¥

Em ProdutoRepository.cs , colocaremos que a classe herdard de BaseRepository , cujo tipo serd Produto , eliminaremos os
campos locais que tinhamos criado na classe, bem como o construtor, pois iremos recria-lo selecionando

ProdutoRepository , usando "Ctrl +." e clicando em "Gerar construtor "ProdutoRepository(contexto)"".

public class ProdutoRepository : BaseRepository<Produto>, IProdutoRepository

{
public ProdutoRepository(ApplicationContext contexto) : base(contexto)
{
}
public IList<Produto> GetProdutos()
{
return dbSet.ToList();
}
// cédigo omitido
}

Continuando, vamos criar outras classes de repositério, selecionando a pasta "Repositories > Adicionar > Classe..." com o

botdo direito do mouse. Criaremos PedidoRepository , classe que serd herdada de BaseRepository do tipo Pedido .

https://cursos.alura.com.br/course/webapp-com-aspnet-core-2/task/37857

3/4



02/12/2019 ASP.NET Core parte 1: Aula 5 - Atividade 1 BaseRepository | Alura - Cursos online de tecnologia

Implementaremos o construtor com "Ctrl +." e "Gerar construtor "PedidoRepository(contexto)". Entdo, faremos uma cépia
deste arquivo para criarmos ItemPedidoRepository , ndo esquecendo de renomear a classe e o construtor no arquivo

também, além de trocarmos o tipo de BaseRepository , que é ItemPedido , e ndo Pedido .

Por fim, faremos 0 mesmo para a classe CadastroRepository , ou seja, trocando a classe e o construtor para deixa-los com o

mesmo nome, e substituindo Pedido por Cadastro .

Todas estas classes que criamos poderdo ser injetadas por inje¢des de dependéncias. Para isto, modificaremos a classe

Startup , na qual incluiremos tudo que acabamos de criar e onde se localizam as instancias tempordrias:

services.AddTransient<IDataService, DataService>();
services.AddTransient<IProdutoRepository, ProdutoRepository>();
services.AddTransient<IPedidoRepository, PedidoRepository>();
services.AddTransient<ICadastroRepository, CadastroRepository>();
services.AddTransient<IItemPedidoRepository, ItemPedidoRepository>();

Criaremos as interfaces, comecando por PedidoRepository , que acessaremos e deixaremos assim:

namespace CasaDoCodigo.Repositories

{
public interface IPedidoRepository
{
}
public class PedidoRepository : BaseRepository<Pedido>, IPedidoRepository
{
public PedidoRepository(ApplicationContext contexto) : base(contexto)
}
}

Faremos o mesmo para as demais interfaces, de modo equivalente, fazendo os ajustes necessarios. Estamos com os

repositérios criados e prontos para serem usados!

https://cursos.alura.com.br/course/webapp-com-aspnet-core-2/task/37857 4/4



