
02/12/2019 ASP.NET Core parte 1: Aula 5 - Atividade 1 BaseRepository | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/webapp-com-aspnet-core-2/task/37857 1/4

 01
BaseRepository

Transcrição

Começando deste ponto? No link a seguir, você pode fazer o DOWNLOAD completo do projeto (https://github.com/alura-

cursos/ASPNETCore20/archive/2b7ce47a897e36bed019548fa7169a249fa779c4.zip) para continuar seus estudos a partir

deste capítulo.

Nossa aplicação está funcionando e, aparentemente, o catálogo está correto, mas se olharmos nossa tabela de produtos

(dbo.Produto), perceberemos que os produtos são importados e duplicados no banco de dados. Isto é, o arquivo

livros.json é importado repetidas vezes, cada vez que subimos o servidor.

Colocaremos um �ltro no nosso repositório de produtos para fazermos uma única importação. Assim, caso o produto já

exista, ele será ignorado. Vamos abrir ProdutoRepository.cs e pegar o método SaveProdutos() , no qual incluiremos o �ltro

para evitar a duplicação.

Caso o produto não exista, faremos a importação do mesmo, a partir do Dbset, naquele conjunto de entidades mantido pelo

Entity Framework, equivalente a uma tabela e representado pelo contexto.Set<Produto>() , o qual colocaremos dentro da

condição if .

Faremos uma consulta para veri�car se um produto com o código que está sendo importado existe ou não, com a cláusula do

LINQ Where() , que utilizará uma expressão lambda. p.Codigo terá que ser igual a livro.Codigo , e esta expressão retornará

os elementos que têm o mesmo código do livro que está sendo importado.

E, então, chamaremos um método (Any()), que retornará verdadeiro ou falso, verdadeiro somente se o produto for

encontrado. Caso este não seja encontrado, executaremos o código da linha que fará a importação deste produto, que

moveremos para cima.

public void SaveProdutos(List<Livro> livros)
{
 foreach (var livro in livros)
 {
 if (!contexto.Set<Produto>().Where(p => p.Codigo == livro.Codigo).Any())
 {
 contexto.Set<Produto>().Add(new Produto(livro.Codigo, livro.Nome, livro.Preco));
 }
 }
 contexto.SaveChanges();
}

Aproveitando que estamos no repositório, vamos eliminar as duplicações da expressão contexto.Set<Produto>() . Para isso,

extrairemos uma variável local com "Ctrl + .", selecionando a opção "Introduzir local para "contexto.Set()"".

Com isso, será criado um dbSet , uma variável local que representa o DbSet de Produto . No entanto, queremos criar um

campo para ser reutilizado durante o tempo de vida desta classe.

foreach (var livro in livros)
{

https://github.com/alura-cursos/ASPNETCore20/archive/2b7ce47a897e36bed019548fa7169a249fa779c4.zip

02/12/2019 ASP.NET Core parte 1: Aula 5 - Atividade 1 BaseRepository | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/webapp-com-aspnet-core-2/task/37857 2/4

{
 Microsoft.EntityFrameworkCore.DbSet<Produto> dbSet = contexto.Set<Produto>();
 if (!dbSet.Where(p => p.Codigo == livro.Codigo).Any())
 {
 contexto.Set<Produto>().Add(new Produto(livro.Codigo, livro.Nome, livro.Preco));
 }
}
contexto.SaveChanges();

Assim, moveremos a linha para cima, e colocaremos o DbSet como campo privado:

private readonly ApplicationContext contexto;
private readonly DbSet<Produto> dbSet = contexto.Set<Produto>();

Com isto, temos a declaração do dbSet , que deixaremos só, e moveremos a atribuição do dbSet , isto é, o trecho dbSet =

contexto.Set<Produto>(); , para baixo, ao construtor, após o qual poderemos eliminar a atribuição da linha de cima:

private readonly ApplicationContext contexto;
private readonly DbSet<Produto> dbSet;

public ProdutoRepository(ApplicationContext contexto)
{
 this.contexto = contexto;
 dbSet = contexto.Set<Produto>();
}

Feito isso, substituiremos todos os lugares em que há contexto.Set<Produto>() pelo campo local dbSet , em:

public IList<Produto> GetProdutos()
{
 return dbSet.ToList();
}

Assim como em:

if (!dbSet.Where(p => p.Codigo == livro.Codigo).Any())
{
 dbSet.Add(new Produto(livro.Codigo, livro.Nome, livro.Preco));
}

Em seguida, criaremos uma classe base que ajudará na eliminação destas duplicações de código, para todos os repositórios a

serem utilizados. Além de ProdutoRepository , usaremos CadastroRepository , PedidoRepository e ItemPedidoRepository . A

classe base será criada na pasta "Repositories" e se chamará "BaseRepository".

Criaremos esta classe copiando um trecho de código do ProdutoRepository — os dois campos locais, contexto e dbSet .

Também reaproveitaremos o construtor, copiando o trecho correspondente e colando em BaseRepository .

public class BaseRepository
{
 private readonly ApplicationContext contexto;

02/12/2019 ASP.NET Core parte 1: Aula 5 - Atividade 1 BaseRepository | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/webapp-com-aspnet-core-2/task/37857 3/4

 private readonly DbSet<Produto> dbSet;

 public ProdutoRepository(ApplicationContext contexto)
 {
 this.contexto = contexto;
 dbSet = contexto.Set<Produto>();
 }
}

Agora, modi�caremos o nome do construtor para BaseRepository , importaremos a referência de DbSet e de Produto .

Nossa classe precisará ser genérica, e não especí�ca para Produto , como está no momento. No lugar de Produto ,

utilizaremos um tipo genérico, um base model, T .

Ele terá que ser uma entidade que herdará do BaseModel , isto é, será preciso um �ltro para o tipo T , com where . Também

teremos que alterar a visibilidade dos campos para deixá-los como protected , pois queremos que eles sejam visíveis por

todas as classes derivadas.

O código �cará da seguinte maneira:

public class BaseRepository<T> where T : BaseModel
{
 protected private readonly ApplicationContext contexto;
 protected private readonly DbSet<T> dbSet;

 public BaseRepository(ApplicationContext contexto)
 {
 this.contexto = contexto;
 dbSet = contexto.Set<T>();
 }
}

Em ProdutoRepository.cs , colocaremos que a classe herdará de BaseRepository , cujo tipo será Produto , eliminaremos os

campos locais que tínhamos criado na classe, bem como o construtor, pois iremos recriá-lo selecionando

ProdutoRepository , usando "Ctrl + ." e clicando em "Gerar construtor "ProdutoRepository(contexto)"".

public class ProdutoRepository : BaseRepository<Produto>, IProdutoRepository
{
 public ProdutoRepository(ApplicationContext contexto) : base(contexto)
 {
 }

 public IList<Produto> GetProdutos()
 {
 return dbSet.ToList();
 }
 // código omitido
}

Continuando, vamos criar outras classes de repositório, selecionando a pasta "Repositories > Adicionar > Classe..." com o

botão direito do mouse. Criaremos PedidoRepository , classe que será herdada de BaseRepository do tipo Pedido .

02/12/2019 ASP.NET Core parte 1: Aula 5 - Atividade 1 BaseRepository | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/webapp-com-aspnet-core-2/task/37857 4/4

Implementaremos o construtor com "Ctrl + ." e "Gerar construtor "PedidoRepository(contexto)"". Então, faremos uma cópia

deste arquivo para criarmos ItemPedidoRepository , não esquecendo de renomear a classe e o construtor no arquivo

também, além de trocarmos o tipo de BaseRepository , que é ItemPedido , e não Pedido .

Por �m, faremos o mesmo para a classe CadastroRepository , ou seja, trocando a classe e o construtor para deixá-los com o

mesmo nome, e substituindo Pedido por Cadastro .

Todas estas classes que criamos poderão ser injetadas por injeções de dependências. Para isto, modi�caremos a classe

Startup , na qual incluiremos tudo que acabamos de criar e onde se localizam as instâncias temporárias:

services.AddTransient<IDataService, DataService>();
services.AddTransient<IProdutoRepository, ProdutoRepository>();
services.AddTransient<IPedidoRepository, PedidoRepository>();
services.AddTransient<ICadastroRepository, CadastroRepository>();
services.AddTransient<IItemPedidoRepository, ItemPedidoRepository>();

Criaremos as interfaces, começando por PedidoRepository , que acessaremos e deixaremos assim:

namespace CasaDoCodigo.Repositories
{
 public interface IPedidoRepository
 {

 }

 public class PedidoRepository : BaseRepository<Pedido>, IPedidoRepository
 {
 public PedidoRepository(ApplicationContext contexto) : base(contexto)
 }
}

Faremos o mesmo para as demais interfaces, de modo equivalente, fazendo os ajustes necessários. Estamos com os

repositórios criados e prontos para serem usados!

