
Unity
créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Pong

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Pong

Bem-vindos à primeira aula do curso "Criando PONG na Unity". Nesta aula, vamos estabelecer
as bases para o desenvolvimento do jogo Pong, explorando os conceitos fundamentais e

preparando o ambiente de trabalho.

Nossa jornada começa com uma compreensão mais profunda do que é o Pong, um dos primeiros
jogos eletrônicos e um marco na história dos videogames. Em seguida, vamos mergulhar no

ambiente da Unity, conhecendo um pouco mais seus recursos e sua interface.

Além disso, abordaremos a etapa crucial da preparação do ambiente de desenvolvimento.
Vamos orientar você na configuração adequada da Unity em seu sistema e mostrar como criar

um novo projeto, o ponto de partida para a criação do nosso próprio Pong.

Estamos ansiosos para compartilhar esses conceitos essenciais e dar os primeiros passos na
criação do Pong na Unity. Vamos começar!

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

O que é o Pong?

Pong, lançado pela Atari em 1972, é um dos primeiros e mais icônicos jogos eletrônicos da história. Criado por
Nolan Bushnell, o jogo é uma recriação virtual do tênis de mesa, onde dois jogadores controlam paletas virtuais em

uma tela dividida.

O objetivo é simples: rebater a bola de um lado para o outro, evitando que ela passe pela paleta e marque um
ponto para o adversário. A jogabilidade é despojada e altamente competitiva, proporcionando horas de diversão

para jogadores de todas as idades.

O sucesso instantâneo de Pong nos fliperamas inaugurou a era dos videogames comerciais e ajudou a estabelecer
a Atari como uma força dominante na indústria. A simplicidade elegante do Pong tornou-o acessível e atraente

para um público amplo, desencadeando uma revolução nos jogos eletrônicos.

Embora os gráficos e os sons do Pong possam parecer rudimentares em comparação com os jogos modernos, sua
influência é inegável. Ele abriu o caminho para uma infinidade de jogos de esportes eletrônicos e serviu como a

base para muitos gêneros que surgiram desde então. Pong é uma lembrança eterna de como um conceito simples
pode dar origem a uma indústria inteira e continua a ser uma parte essencial da história dos jogos eletrônicos.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Configuração Inicial

Passos iniciais para a configuração e começo do projeto:

● Abertura da Unity Hub
● Crie de um novo projeto
● Escolha o template 2D

● Salve o nome do projeto como Pong Demo ou similar
● Escolha uma pasta para salvar o projeto

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Criação da cena

Ao iniciar um novo projeto na Unity, o ambiente é automaticamente configurado para ajudar você a começar a
desenvolver seu jogo. Uma cena vazia é criada por padrão, pronta para ser moldada de acordo com sua visão.

Também podemos criar uma nova cena, a depender da nossa necessidade.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Game Manager

O conceito do script "Game Manager" em jogos desempenha um papel vital na organização e funcionalidade do
jogo como um todo. Esse script age como uma central de controle, supervisionando o fluxo do jogo, coordenando

diferentes elementos e gerenciando a lógica subjacente. É responsável por tomar decisões importantes, como
determinar o estado atual do jogo, controlar transições entre cenas, níveis ou fases, gerenciar recursos como

pontuações e vidas, e facilitar a comunicação entre diferentes componentes do jogo. Além disso, o "Game
Manager" também pode lidar com eventos-chave, como condições de vitória ou derrota, e pode estar envolvido na
persistência de dados, como salvar e carregar o progresso do jogador. Em essência, o script "Game Manager" é o

cerne operacional que mantém a coesão e a jogabilidade fluida ao longo de toda a experiência de jogo.

Crie um novo script chamado GameManager, e adicione a um objeto na hierarquia chamado GameManager.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Raquetes

Agora vamos começar criando as raquetes do nosso jogo:

● Clique com o botão direito > Create Empty.
● Repita o processo por 2 vezes

● Renomeie os objetos criados para "PlayerPaddle" e "EnemyPaddle" para maior clareza.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Raquetes

● Selecione PlayerPaddle e clique em "Add Component"
> Physics2D > Box Collider 2D.

● Selecione EnemyPaddle e adicione também um Box
Collider 2D.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Raquetes

● Selecione PlayerPaddle e clique em "Add Component"
● Digite Sprite Renderer e adicione o componente Sprite Renderer

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Raquetes

● Nos dois Sprite Renderer (Enemy e Player), selecione a sprite
Background, em Sprite. Essa é uma sprite comum que a unity

fornece. Mais a frente podemos trocar por outra imagem.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Raquetes

● Ajuste a posição e tamanho do EnemyPaddle e PlayerPaddle como na
imagem abaixo. Repare que a posição do Enemy é -7 e a do player 7.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Raquetes

// No script do GameManager
public Transform playerPaddle;
public Transform enemyPaddle;

// ...

void Start()
{
 ResetGame();
}

public void ResetGame()
{
 // Define as posições iniciais das raquetes
 playerPaddle.position = new Vector3(-7f, 0f, 0f);
 enemyPaddle.position = new Vector3(7f, 0f, 0f);
 // ...
}

Agora vamos começar adicionar os primeiros
scripts ao jogo.

No script GameManager, adicione o código ao
lado. Ele fará com que a posição inicial das

raquetes sejam sempre resetadas ao início do
jogo.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Raquetes

 public float speed = 5f;

 void Update()
 {
 // Captura da entrada vertical (seta para cima, seta para baixo, teclas W e S)
 float moveInput = Input.GetAxis("Vertical");

 // Calcula a nova posição da raquete baseada na entrada e na velocidade
 Vector3 newPosition = transform.position + Vector3.up * moveInput * speed *
Time.deltaTime;

 // Limita a posição vertical da raquete para que ela não saia da tela
 newPosition.y = Mathf.Clamp(newPosition.y, -4.5f, 4.5f);

 // Atualiza a posição da raquete
 transform.position = newPosition;
 }

Agora, crie um novo script chamado PlayerPaddleControler. Ele será o responsável por controlar a
movimentação do jogador.

Adicione nele o código abaixo:

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Raquetes

Adicione o PlayerPaddleControler ao PlayerPaddle.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Bola

Adicione um novo objeto na hierarquia, e de o nome de Ball

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Bola

Agora, adicione ao objeto Ball 2 novos scripts:

● CircleCollider2D

● Rigibody2D

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Bola

Também adicione um Sprite Renderer. Desta vez, selecione
Knob como sprite.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Bola

 private Rigidbody2D rb;
 private Vector2 startingVelocity = new Vector2(5f, 5f);

 public void ResetBall()
 {
 transform.position = Vector3.zero;

 if(rb == null) rb = GetComponent<Rigidbody2D>();
 rb.velocity = startingVelocity;
 }

Crie um script BallController, adicione o código abaixo. Ele será o responsável por fazer a bola iniciar a se
movimentar.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Bola

 public BallController ballController;

 //Inserir dentro do ResetGame
 ballController.ResetBall();

No GameManager, crie uma referência para BallController. Então, dentro de ResetGame, adicione uma chamada
para o método ResetBall, dentro de BallController.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Paredes

Agora vamos adicionar as paredes.

Adicione um GameObject chamado Wall.
Nele, adicione os seguintes scripts:

● BoxCollider2D
● Sprite Renderer (com a imagem Background em sprite)

Ajuste o componente Transform para como mostra a imagem ao lado.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Paredes

Duplique o GameObject Wall, e ajuste o transform como ao lado.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Paredes

Crie uma nova Tag chamada Wall. Ela será importante para identificarmos
quando a bolinha bater neste objeto. Depois disso, selecione Wall como a tag

dos dois objetos Wall.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Paredes

 void OnCollisionEnter2D(Collision2D collision)
 {
 if (collision.gameObject.CompareTag("Wall"))
 {
 Vector2 newVelocity = rb.velocity;

 newVelocity.y = -newVelocity.y;
 rb.velocity = newVelocity;

 }
}

Dentro do Script BallController, adicione o código abaixo. Ele será o responsável por identificar a colisão da bola
com a parede, e inverter as velocidades Y.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Paredes

 if (collision.gameObject.CompareTag("Player") || collision.gameObject.CompareTag("Enemy"))
 {

 rb.velocity = new Vector2(-rb.velocity.x, rb.velocity.y);

 }

Agora vamos adicionar o seguinte código dentro do método OnCollisionEnter2D, no script BallController.

Ele fará com que seja identificada a colisão com o jogador ou inimigo.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Paredes

Precisamos agora adicionar a tag Enemy e Player, ao gameobject EnemyPaddle e PlayerPaddle.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Pontos

Agora vamos adicionar o sistema de contagem de pontos.

Duplique os gameobjects Wall. Em um, coloque o nome de PointPlayer, e em outro EnemyPlayer.

Eles ficarão posicionados atrás de cada jogador, na extremidade da tela. Quando a bola encostar neles, um
ponto será marcado: ou do Player, ou do Inimigo.

Também adicione as tags WallEnemy/WallPlayer, como na imagem abaixo.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Pontos

Clique com o botão direito na hierarquia -> UI -> Text -
TextMeshPro.

Repita o processo duas vezes. Cada objeto criado, de o nome
de uma pontuação:

● TMP_PointsPlayer
● TMP_PointsEnemy

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Pontos

Repare que os objetos serão criados dentro de outro objeto chamado Canvas.

Selecione o Canvas, procure pelo script Canvas Scaler. Mude a configuração para ficar igual a
imagem abaixo: UI Scale Mode: Scale With Screen Size.

Isso fará com que a UI seja sempre escalada proporcionalmente de acordo com o tamanho de tela.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Pontos

public int playerScore = 0;
public int enemyScore = 0;

public TextMeshProUGUI textPointsPlayer;
public TextMeshProUGUI textPointsEnemy;

No script GameManager, adicione estas 2 variáveis:

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Pontos

playerScore = 0;
enemyScore = 0;

textPointsEnemy.text = enemyScore.ToString();
textPointsPlayer.text = playerScore.ToString();

Dentro do método ResetGame, no GameManager, vamos resetar a pontuação. Adicione:

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Pontos

 public void ScorePlayer()
 {
 playerScore++;
 textPointsPlayer.text = playerScore.ToString();
 }

 public void ScoreEnemy()
 {
 enemyScore++;
 textPointsEnemy.text = enemyScore.ToString();
 }

Agora, vamos adicionar esses dois métodos. Eles serão úteis para controlar a pontuação de cada jogador.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Pontos

 if (collision.gameObject.CompareTag("WallEnemy"))
 {
 gameManager.ScorePlayer();
 ResetBall();
 }
 else if (collision.gameObject.CompareTag("WallPlayer"))
 {
 gameManager.ScoreEnemy();
 ResetBall();
 }

Dentro de BallController, no método OnCollisionEnter2D, adicionar:

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Pontos

 public GameManager gameManager;

Precisamos também colocar uma referência do gameManager no começo do script. E depois fazer a referência
no editor da Unity.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Inimigo Automático

 private Rigidbody2D rb;
 public float speed = 3f;

 private GameObject ball;

 void Start()
 {
 rb = GetComponent<Rigidbody2D>();
 ball = GameObject.Find("Ball"); // Encontra o objeto da bola na cena
 }

Podemos adicionar agora um movimento ao inimigo. Para que possamos jogar com apenas um jogador.

Para isso, crie um script com o nome de EnemyPaddleController. Adicione o código abaixo nele:

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Inimigo Automático

 void Update()
 {
 if (ball != null)
 {
 float targetY = Mathf.Clamp(ball.transform.position.y, -4.5f, 4.5f); // Limita a posição Y
 Vector2 targetPosition = new Vector2(transform.position.x, targetY);
 transform.position = Vector2.MoveTowards(transform.position, targetPosition, Time.deltaTime
* speed); // Move gradualmente para a posição Y da bola
 }
 }

Agora adicione esse trecho ao script criado.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Fim de jogo

Agora precisamos adicionar a lógica de final de jogo. Ou seja, quando um jogador atingir um certo número de
pontos, o jogo será reiniciado.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Fim de jogo

 public int winPoints;

 public void CheckWin()
 {
 if(enemyScore >= winPoints || playerScore >= winPoints)
 {
 ResetGame();
 }
 }

Para isso, vamos adicionar os scripts abaixo no GameManager:

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Fim de jogo

 public void ScorePlayer()
 {
 playerScore++;
 textPointsPlayer.text = playerScore.ToString();
 CheckWin();
 }

 public void ScoreEnemy()
 {
 enemyScore++;
 textPointsEnemy.text = enemyScore.ToString();
 CheckWin();
 }

Então, dentro de cada função de score, adicionamos a chamada do método CheckWin.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Fim

Chegamos ao fim de nossa jornada na criação do jogo Pong na Unity. Através de empenho e aprendizado,
transformamos conceitos abstratos em um jogo interativo. Parabéns por essa conquista! Seu jogo Pong está

pronto para ser jogado e compartilhado. Este é apenas o começo de suas habilidades no desenvolvimento de
jogos. Aguardamos ansiosamente suas futuras criações emocionantes. Parabéns mais uma vez e continuem

explorando novos horizontes nos jogos eletrônicos.

créditos imagens flaticon.com

Rafael Ferrari Módulo: PongUnity

Exercício

O principal exercício deste módulo é o desenvolvimento do jogo Pong como demonstrado em aula.

Adicione ajustes e features a mais conforme desejar ao jogo.

